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Chapter One: Introduction and Motivation 

1.1- Introduction  

The numerical computation of the transport of constituents in river networks has 

become an essential tool for the planning, design, and assessment of the feasibility of 

water projects. Although the physical, chemical, and biological processes associated with 

the transport and fate of constituents in rivers have not yet been completely elucidated 

(see for instance, Massoudieh et al., 2010), engineers around the world are constantly 

called upon to provide answers regarding the exposure of animals and plants to 

contaminants, at diverse spatial and temporal scales. In this context, any development of 

computer simulating tools for the analysis of constituent transport in rivers should 

incorporate the most appropriate theoretical models to represent partially-understood, 

complex phenomena, and should adopt the most robust numerical techniques in order to 

provide optimized answers in practical cases. 

One of the main technological motivations for this research is the analysis of 

sediment transport in the Sacramento-San Joaquin Delta, which is linked to the San 

Francisco Bay. These two water bodies form the largest estuary along the West Coast of 

the U.S. and have a notable importance for 25 million people in the California (Abiouli et 

al., 2007). There are many aspects in the Delta which are affected or impacted by 

sediment transport, namely: biological communities, levees, wetlands, construction of 

dams on major rivers, water diversion projects, dumping of urban and industrial waste in 

the bay, and dredging and navigability of waterways. There is a lack of validated tools for 

more precise analysis of the sediment transport in this estuarine system. 

Seeking for and developing numerical tools for the sediment transport problem in 

the Delta, this writer found himself with clear scientific unanswered questions which are 

the scope of this Ph.D. proposal, as listed below as scientific motivation.  

 

1.2- Scientific Motivation 

This research focuses on the analysis of transport equations that include advection, 

diffusion, and reaction to solve most phenomena in environmental engineering. Sediment 

transport equations are one particular example of such ADR equations, but the outcomes 

of this research are applicable to other systems as well. The three processes (A, D, and R) 



 

 3 

are highly variable in natural problems, from very reactive flows in groundwater 

pollution to highly advective flows in rivers. These ranges are characterized by two non-

dimensional numbers: Peclet number which is defined as a measure of the relative 

dominance of advection versus diffusion, and Damkohler number which is the ratio of the 

reaction rate to the convection rate
i
. In this work, we solve the ADR equations with an 

Operator Splitting (OS) approach. OS has the following advantages over alternative 

methods: 

a) The most appropriate discretization technique may be used for each process (it could 

be either implicit or explicit).  

b) OS is capable of handling processes with different range of characteristic scales, in an 

efficient way by sub-cycling (sub-stepping) in one of the parts. 

c) OS in practice is easier to employ in comparison with other equivalent methods. 

d) Further modifications and developments are very straightforward in the OS schemes 

compared to the direct methods.  

The goals of the present research are as follows:  

Goal 1: Contribute to the understanding of the robustness, accuracy, and well-posedness 

of ADR solvers for the scales of environmental problems in rivers and estuaries, using 

Operator Splitting. 

Goal 2: Contribute to the understanding of the phenomenon of infiltration of sand in 

gravel-bed streams without pattern recognition techniques in the measured data, and only 

by means of the constitutive physical laws. 

 

1.3- Research Objectives 

The first and second objectives are related to the first goal of the research and the third 

one addresses the second goal of the proposal. 

Objective 1: Address the convergence and accuracy of a 1D, ADR solver based on 

Operator Splitting. Test those properties for different boundary conditions and varieties 

of operators’ scales; Advection to Diffusion and Reaction to Advection.  

Objective 2: Facilitate a reliable framework for verification of the accuracy and 

convergence of ADR solvers for environmental problems in the absence of analytical 

                                                 
i
 In some references the definition of Peclet and Damkohler numbers are the inverse of the above ratios. 
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solutions through the development of solution based on theMethod of Manufactured 

Solutions (MMS). 

Objective 3: Develop a theoretical/mathematical model for gravitational infiltration of 

sand in gravel beds in bed-load motion.  

 

1.4- Technological Motivations 

There are numerous issues which bring technological motivation to the present research 

proposal as follows: 

• Environmental Concerns: Since the industrial revolution man has used 

estuaries and rivers to dispose of his waste. This has been the case since man first lived 

near rivers and estuaries, but pollutants were mainly organic and biodegradable. As 

populations expanded, geopolitical factors gathered people together in larger groups and 

people more often settled in the banks of rivers for many obvious reasons. With Industrial 

Revolution came the advent of toxic and dangerous chemicals as byproducts and the 

obvious place for these were in rivers and estuaries (Towner, 1994). Sediments have a 

major influence on the behavior of chemical constituents in estuaries. The high organic 

matter content in estuaries and the high biological productivity of sediment results in 

sediment exerting demand for dissolved oxygen from the overlaying waters (SOD
ii
). The 

deposition of nutrient rich organic detritus and its subsequent biological decomposition 

means that estuarine sediments act as both sink and source of nutrients such as 

phosphorous and nitrogen; sediment acts as a reservoir for nutrients (Chapra, 2008). In 

addition to their role in the nutrient and oxygen balance of estuaries, sediments are of 

critical importance due to their interaction with contaminants and introduced to rivers and 

water bodies by industrial activities. These contaminants may include trace metals and 

metalloids such as lead, zinc, copper, mercury, arsenic or selenium, and organic micro-

pollutants, such as pesticides, petroleum hydrocarbons, and so forth. With large 

chemically reactive surface areas, sediments absorb and concentrate many of these 

pollutants from the water column and as a result estuarine sediments act as a major sink 

for pollutants introduced to estuaries (Forstner and Wittman, 1983). A major motivation 

for a tool to analysis of sediment movement pattern is; that can often provide a useful 

                                                 
ii
 Sediment oxygen demand  
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means of determining the degree of contamination of an estuary by pollutants (Forstner 

and Wittman, 1983). Even pollution histories of estuaries can be reconstructed by 

examining undisturbed dated sediments. 

• Climate Change Simulation: The climate record over the last 100 years or so 

exhibits ample evidence for variations in rainfall, river flow, and mean sea water level 

(Jones et al., 1986), but we have little understanding of what causes and controls these 

regime changes (Karl, 1988; Wunsch, 1992). Understanding how climate variations will 

impact engineering facilities design and maintenance policy is an issue of increasing 

concern. Of particular interest are climate variations which occur within the facilities’ 

lifespan. In the absence of rigorous predictive tools for future, researchers, by means of 

 

Figure 1: Sea level rise predictions forecasted by different scenarios for the next century 

(Intergovernmental Panel on Climate Change 2001) 

 

stochastic models or by incorporating deterministic assumptions, have developed some 

probable scenarios for the Delta. The mentioned scenarios for the Delta outflow and 
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mean sea level (MSL) could be modeled by a sediment transport model to provide an 

overview of the long term picture of the Delta’s morphological pattern. Sediment 

transport, likewise all other kinds of transport phenomena governed by advection, 

diffusion, and reaction of mass. ADR solver is the core engine in all sediment transport 

codes. Designing, planning, and maintenance of waterways, harbors, and water 

conveyance facilities could be modified based on the results of long term morphological 

vision of the Delta. 

• Bed Material Sorting: Sediment engineering objectives that previously focused 

on erosion and sedimentation in engineering structures have been increasingly concerned 

with assessment of ecological indices and restoration design. While these studies often 

require classical computations of bed level or volume change, there is a growing interest 

in the evaluation of bed gradation transience in response to natural or anthropogenic 

events or planning alternatives. Invertebrate habitat, salmonoid spawning suitability and 

hyporheic flux are all functions of bed gradation (Gibson et al., 2010). 

• Waterway Navigability: Dredging by definition means maintaining the safe 

navigation depth of a channel or harbor (PIANC, 2006). Dredging plant is expensive to 

build and operate. A small trailing suction dredger may cost in excess of £ 1,000,000 (at 

1989 value) and the useful working life of the plant will be between 10 and 30 years. The 

old definition of dredging would be the act of deepening in an area with the aid of a 

dredger. However there are a number of complementary activities which would reduce or 

even eliminate the need to dredge, such as flood control, implementing sediment traps, 

leveling the bed etc. Waterway designers can incorporate a sediment transport model as 

an interpretive tool for determining the source of sediment load in the Delta channels 

under different circumstances. In addition it could be used as a predictive tool to 

determine waterway equilibrium condition after carrying out an engineering project.  

• Engineering Design of Water Intake Facilities: Rivers provide fresh 

water for urban and industrial consumptions in the Sacramento-San Joaquin Delta. The 

water intake facilities are able to work in a predefined range of total suspended solid 

(TSS). The working range is due to the design of their water treatment plant or other 

technical considerations. Numerical sediment transport simulation could be adopted for 

operation rule base of any water intake in the Delta. In addition the positioning of inlet 
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and plant settling basin can be located based on the sediment transport model’s 

simulations. 

 

Figure 2: DSM2-Hydro, the Hydrodynamic Engine of the ADR Solver; Schematic of the 

Sacramento - San Joaquin Delta Grid. DWR Bay Delta Office, 22
nd

 annual report (2001) 

 

• Boundary Conditions for Higher Dimension Local Models: There is 

always a trade off between the details a model can provide and its computational costs. In 

recent decades there has been enormous progress in both efficient numerical schemes and 

computing platforms; however long-term 3D modeling of outsized domains is still not 

feasible even with adaptive meshes and other novel methods, due to shortcomings in 

computational resources. On the other side, for simulating phenomena such as local scour, 

breach processes, flow and sediment patterns in an intake, 3D modeling is the last resort 

before the expensive physical modeling. There is a middle way for addressing the above 
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problems; implementing the 3D model in the location of interest and expanding the 

domains to attenuate the BC-imposed error. After a certain limit the BC could be 

provided with 1D code without practical drop in the accuracy. The sediment transport 

model could be incorporated for coupling with more detailed codes, and providing the 

BC for their simulation domain.  

• Application to Conflict Resolution: In the Sacramento-San Joaquin Delta 

there are many marinas and harbor facilities. Maintaining the facilities due to the 

sediment problem is a costly practice. Some of the stakeholders claim the problem is due 

to others’ activities. A quantitative sediment transport tool could help to quantify the 

claims and can be a base for conflict resolution. 
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Chapter Two: Knowledge Gaps and Methods 

In this chapter the unanswered aspects in the sediment transport literature are briefly 

mentioned and the approach to address them is discussed. 

 

2.1- Objective One: ADR Efficiency Improvement for Tidal Systems  

In the literature of numerical methods for coupling source terms and transport by 

advection and diffusion, Operator Splitting became a classic method in the last two 

decades. Fractal step method or Operator Splitting (OS) has been used widely in 

geohydrology, chemical engineering, air pollution, and atmospheric simulation (Valocchi 

and Malmstead, 1992; Steefel and MacQuarrie, 1996; Sommeijer et al., 1981; Khan and 

Liu, 1995; Kaluarachchi and Morshed, 1995). There is also research in estuarine 

modeling with Operator Splitting. In one study, only the advection and diffusion 

processes were considered (Aiyesimoju and Sobey, 1989). None of the above researches 

rigorously used a 2
nd

 order accurate splitting method. It is worth mentioning regarding the 

OS method that many conventional methods of solving ADR could be recast 

mathematically as operator splitting forms and vice versa (see Leveque, 2002). The direct 

Operator Splitting (Godunov Splitting) will produce 1
st
 order accuracy in general unless 

the operators commute. The alternating OS (Strang, 1968) will produce general 2
nd

 order 

accurate method. The proofs of the above statements were carried out by Leveque (1981) 

using Fourier Error Analysis and by Lanser and Verwer (1989) in the context of Lie 

Operator. That is worth mentioning; in the most general form, the equations of 

hydrodynamics and transport have to solve together but in nearly all of riverine and 

estuarine codes the OS employed and the hydrodynamic runs first then it feeds the 

transport solver. 

Note: Some terminology is used in this proposal that may require explanation. 

Here the terms Source and Reaction are used alternatively in the mathematical context for 

all kinds of sinks, sources, lateral inflows and chemical reactions, or in general, the right 

hand side of the equation 1, that is our interest, as follows: 
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in which A is area [L
2
], C is the constituent’s concentration [L

3
/L

3
], t is time [T], x is 

streamwise direction [L], K is dispersion coefficient [L
2
/T], E is entrainment [L

2
/T], D is 

deposition [L
2
/T], and qlat is the lateral inflow of the constituent [L

2
/T].  

This terminology has been adopted from the works by Leveque (2002), Lanser (1989), 

and Sommeijor (1981), so the term reaction or source imply terms in the right hand side 

of equation 1, and does not mean chemical reaction unless it is mentioned in the text. We 

use the term chemistry for chemical reaction. 

The entire source terms in this proposal are assumed to be kinetically controlled 

reactions. In this kind of reaction, the characteristic time scale is in same orders of the 

hydrodynamic characteristic time. In case they are assumed to be instantaneous 

equilibrium reactions, the text denotes them as instantaneous reactions. Treatment of 

instantaneous chemical reaction in general needs and implicit solver and the source term 

in this kind of phenomenon should solve simultaneously with other interacting 

constituents.   

The sediment source term of entrainment and deposition functions for non-

cohesive sediment transport phenomenon is provided in the appendix C-1 and the 

relations for cohesive sediment transport is attached in the appendix C-4 of this proposal. 

Second-order accurate operator splitting 

Consider the following IBVP
iii

: 
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The greatest difficulty with Operator Splitting arises in defining the intermediate 

boundary conditions of the equations (5) and (6). Theoretical developments of the 

                                                 
iii

 Initial Boundary Value Problem 
iv
 The decomposition of L is non-unique 21321 LLLLLL ′+′=++= , also the operators can be grouped in 

different ways 
23121 , LLLLL ′=′=+  or 

23211 , LLLLL ′=+′=  
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intermediate boundary condition have been presented by Leveque (1983), Aiyesimoju 

and Sobey (1989), Sommijier et al. (1981), Khan and Liu (1995) for two operators 

(reaction was not included) or case of Godunov Splitting (1
st
 order accurate). The 

development of 2
nd

 order accurate approximation of the intermediate boundary condition 

for three consecutive operators (Advection, Diffusion and Reaction) could not be found 

in the literature to the best of my knowledge and afford a good opportunity for research.  

The question here is: do we really need high resolution OS method? Maybe the 

low resolution schemes could be employed for small domains or short time spans, but in 

the historical runs and oversized domains accumulation of error will ruin the results. On 

the other hand the refinement of the mesh is not always feasible due to the limitation of 

computational resources. Thus, undoubtedly a high resolution solver is required for 

dealing with an oversize IBVP problem. To have a quantitative picture from the BC 

imposed problem, compare the L1 values in the tables 11 with table 12, first case is 

Godunov splitting with trial exact boundary condition and the second one is the same 

problem which is subjected to zero order non-trivial boundary condition, In the former 

convergence ratio is approximately 1.95 and in the latter it drops to 1.02
v
, solution 

accuracy is also drops 2 to 3 order of magnitude as well
vi

.          

In this research, the equation of interest is equation (1), the details of erosion and 

deposition could be found in appendix C. The first aim is determining the error caused by 

operator splitting. This error will be calculated by defining a very large domain, run the 

problem, and calculating the error norms, and calculating mass for an ADR benchmark 

case which is subjected to trivial zero flux boundaries at far left and right of the domain. 

In the next step, the zero order, first order and second order approximations of the 

boundary condition will be derived for ADR splitting. The effect on accuracy and order 

of error convergence will be studied for different splitting methods (Godunov and Strang), 

boundary condition implementation (zero, first, and second order) and different ranges of 

dimensionless numbers (Peclet and Damkohler).  

                                                 
v
 In OS, Splitting error is a function of commuting of operators (Sommeijer et al. 1981), since in all of the 

previous researches the study were conducted based on comparing with the analytical solutions in which 

the Area, Velocity and Dispersion coefficient are assumed to be constant, the author expects even larger 

error in case of non constant coefficients.    
vi
 Both problem where observed in the same portion of domain. 
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If an equal portion in the middle with the same grid size is assumed (labeled by 

Observation Part in figures 3 and 4), and the same problem as first part (the part with 

trivial correct boundary condition) is considered, we may distinguish the error due to the 

boundary condition in operator splitting. 

     

Figure 3: Schematic of a domain with trivial zero flux boundary 

 

Figure 4: Schematic of a domain with non-trivial boundaries to study effect of different boundary 

conditions on accuracy and error convergence rate.  

 

One of the knowledge gaps in the OS literature which is going to be addressed here is the 

study of convergence rate behavior with different intermediate boundary conditions. The 
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other original deliverable of this research will be the study of the accuracy of the OS 

solvers based on different ranges of the dimensionless numbers. 

 

2.2- Objective Two: Rigorous Verification of the ADR Solver 

The general form of ADR equation which was our interest in Objective 1 is:  

( ) ( ) ( ) )7(),(),,(
),(

),(),(
),(),(),(),(),(

txCtxuR
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∂

 

where A is Area, C is concentration, u is velocity, K is longitudinal dispersion coefficient, 

and R is the source term. The question here is: if one wants to find accuracy and 

convergence ratio of a scheme in which the analytical solution is unknown (absence of 

analytical solution is the main motivator towards all numerical methods), what should be 

done? It is ideal to test a model’s correctness by comparing its numerical results with 

analytical solutions; however the difficulty is that there is not a general solution for the 

non-linear IBVP in hydrodynamics. There are some ways to deal with this problem: 

Richardson Extrapolation in the applicable situations (Roache and Knupp, 1993), 

comparison of results with another higher order solver (the benchmark solver must be 

verified beforehand), we can reduce the mesh size and compare with in relative terms, 

Method of Manufactured Solutions (MMS), and Prescribed Solution Forcing Method 

(PSF) (Wang and Jia, 2009). The basic concept of the MMS and PSF is to compare the 

correctness of numerical solvers using an arbitrary manufactured function. MMS and PSF 

are conceptually following the same idea, although the former is more general than the 

latter. PSF have been used for the verification cases in which the user can not access the 

source code to define boundary conditions like some groundwater codes. Since the author 

with his code, is able to define the boundaries, the objective 2 will be carried out through 

MMS.  

The Method of Manufactured Solutions is a general approach to provide a certain 

analytical solution of the governing equation for the question of model testing and 

verification of non-linear numerical solvers in rigorous procedure. Since only the 

numerical method is to be tested (not the physics of the problem) it would be effective if 

an arbitrarily made non-linear function can be used in model verification. The exact 

solution which is manufactured in this method does not need necessarily be realistic 
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(Roache 2009, 2002; Wang et al., 2009) because the verification is a purely mathematical 

process. We want a benchmark solution that is non-trivial but analytical, and that 

exercises all ordered derivatives in the error expansion and in all terms.   

Let the differential equation be expressed as: 

0)( =uL                                                                                                    (8) 

in which L denotes the differential operators and u is the variable to be solved. When a 

manufactured function φ is substituted into the differential equation, one would have: 

RL =)(ϕ                                                                                                   (9) 

Since φ is not the solution of differential equation, the non-zero R is obtained analytically. 

In the solver, the numerical solution of this equation would be forced to converge to φ 

with the analytical forcing term R being added to the mathematical equation of the 

numerical model as the source term. The verification of a numerical model is simple 

because the solution of equation (7) is known; one needs only compare the difference 

between the manufactured analytical function, φ, and the numerical solution of equation 

(7). Although the function φ can be manufactured arbitrarily, it has to be non-trivial for 

all the terms of the involved mathematic equations to make a meaningful verification 

tests. MMS does not require the satisfaction of any particular boundary condition other 

than those defined by φ along the boundaries of computational domain. The following 

example clarifies the method: 

Example 1: Development of a MMS for Eq.(1) (Zamani et al. 2010) 

Since the MMS ends up to a source term, we may assume the simplified ADR governing 

equation as (10) which initially does not have source term:  
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There is no restriction on the boundary and initial condition, they will be appear 

automatically after choosing the function for manufactured solution.  
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The above is governing equation in a very general form (area, velocity and dispersion 

coefficient are spatial and temporal variable), since the method is a general concept, any 

solution for C can be picked regardless of the governing equation, so we pick the (12) 

and insert it in to the (11):  
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The function which is picked for MMS must not vanish in the governing equation, so for 
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So the modified equation (11) is: 
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Subjected to the initial condition: 
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Although the above algorithm seems straightforward at the first glance, the author faced 

practical restrictions as follows:  

1. The ADR solver is only working in the feasible ranges of dimensionless numbers 

(
ScaleScale

Scale

Scale

Scale

DorA

R
Da

D

A
Pe == , ) so in case the reaction rate in equation (7) is 

exceeds a certain limit, the ADR solver is not really tested on the nature of the 

physical problem. 

2. Some of the coefficients in equation (7) can not have negative values (Area, 

Concentration and Dispersion Coefficient), and we prefer to check them in the 

scales which usually occur in nature. 

3. Area and velocity must fulfill the continuity equation. So we can just set one of 

them and the other one is not our choice. 

Therefore, finding the manufactured solution with these restrictions is not straightforward. 

The method to overcome the above restrictions is a novel method and to the best of the 

author’s knowledge no one mentioned it in the literature yet. The idea is to start from a 

known analytical solution by Zoppou and Knight (1997)
vii

. We may perturb the answer, 

then insert the perturbed answer into the equation (10) to get the source term. The trick 

implicitly preserves the above mentioned restrictions. The symbolic math solver is 

incorporated to derive the equations and it will be called by FORTRAN code or 

hardwired in the FORTRAN source routine.  

 

2.3- Objective Three: Model for Sand Infiltration in Gravel Bed 

Although some people believe that the present time the theoretical methods 

dealing with ADR solvers are mature after nearly four decades of challenging the 

problem, the Achilles’ heel in the modeling of constituent in general and especially 

sediment transport is the definition of the source term (Leveque, 2002; Ateljevich, 2010). 

The definition of erosion and deposition in sediment transport literature is based on 

empirical relations. Mehta and McAnally (2007) mentioned that the state of current 

                                                 
vii

 Appendix B. 
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knowledge is very far from being able to capture all the behavior of sediment erosion and 

deposition just by the constitutive laws in near decades. The attempts to derive a 

mathematical model of deposition based on a simplified model in Pseudo-Lagrangian 

framework will be addressed in this research. The problem of deposition here is reduced 

to deposition of non-cohesive sediment in a streambed with coarser material.  

 

Figure 5: Schematics of Different Bed Fining Procedure (Gibson et al., 2009).  

 

Figure 6: Different Frameworks for Description of the Sand Infiltration Problem 

a)Lagrangian ∑
−

=

=
Particlen

i

imM
1

, b) Pseudo Lagrangian ∑
=

=
8

1i

iMM , c) Eulerian ∫= dmM  

 

Simplified Problem 

Let’s assume the distribution of material in all layers and the top sand layer in figure 7 

are known at the beginning. For the sake of simplicity we just consider a 1D phenomenon 

(vertical). The problem could be approached in three different ways: 

a) Material Description  b) Pseudo Continuum Description  c) Continuum Description  
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1- Lagrangian approach (figure 6-a); the infiltration process is a Markov Chain, the 

process at time n+1 is only dependent of the system’s state at time n. Individual sand 

parcels are traced until the time they trap in a layer and the porosity of the layer, has 

to be updated for new particles’ combination, But there are clearly certain drawback: 

the number of parcels can be very large and computation becomes extremely costly. 

2- Pseudo Continuum
viii

 approach (figure 6-b); Same as above process, but the sand 

mass is divided to the smaller continuum subdivisions and at each time step, one 

portion is added to the layers beneath, then the porosity of layers is updated based on 

new particle combination in each layer. 

3- Eulerian approach (figure 6-c); the mass is assumed to be continuum and the 

governing partial differential equation for time evolution of the porosity as a function 

of entered mass must be solved for each class. The problem here is: how to find the 

governing PDE of the problem?   

 Approach:  

If we can derive the “void size distribution” and represent it by d at each layer, we will 

estimate how many void sizes the sand particle d ′ will have to cross, until it finds a 

d such that dd ′< . If it is assumed that in each step the particle moves a certain distance 

(a layer in figure 7), the mathematical procedure could be assumed as follows: 

From discretization of grain size distribution of each layer into m classes we assume each 

class is represented by its average diameter, di; for each class of diameter the cumulative 

percentage Fi will be associated with a probability function Pi , and then with each di  a 

probability of occurrence  Pi will be associated. For example, let’s assume we have a 

mass of sand on the top of gravel material. Here we just solve for the arrangement of 

three neighboring particles, in a bed which is made of three different particle sizes, but 

the procedure could be carried out for any arbitrary arrangement of particles and number 

of particle sizes.    

 

                                                 
viii

 In the literature of Atmospheric Science, this approach is called “Semi-Lagrangian”   
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Figure 7: Schematic of the 1D gravitational sand infiltration problem 

 

Three fundamental hypotheses will be established: 

1- The river bed is at its maximum density
ix

 

2- Particles are spherical 

3- The relative positions occupied by the grains are random 

In so doing it could be assumed that any point in the middle of the bed materials is made 

up of a three tangent spheres with diameters, dk, dl, and dm and with corresponding 

probabilities Pk, Pl, and Pm that can be represented by the internal tangent circle of d : 

 ),,( mlk dddfd =                       (16) 

                                                 
ix

 It will be expanded in to loose bed material in further steps, with the void ratio between four and more 

adjacent particles, but the solution procedure is the same as above. 
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And we may compute the probability of d occurrence, P based on Pk, Pl, and Pm  

(Kemeny et al., 1959) 

mlk r

m

r

l

r

k

mlk

PPP
rrr

P ...
!!!

!3
=           (17) 

In which the rq  are the number of times that dq occurs in a group and ∑
=

=
3

1

3
i

ir and ri must 

be a non-negative integer number. Based on the P , probability of entrance will 

determined and then the grain distribution updates, the whole procedure is repeated for 

the updated grain distribution until the difference between two successive steps 

converges to negligible value. The following example makes the procedure clear: 

Example 2: 

Let’s assume we have 3 different sizes in the bed materials d1, d2, and d3. In the sediment 

transport gravel and sand (non-cohesive sediments) can divided to 10 different sizes
x
, and 

let’s assume bed material is compact and the void paths are just through arrangements of 

3 particles, 25% of the grains are d1, 35% d2, and 40% d3 
xi

 , all the permutations of bed 

particles are ten cases as follows: 

321:1
3

3
ddd=








 

112332113223331221 ,,,,,:6
1

2

1

3
dddddddddddddddddd=
















 

111222333 ,,:3
1

3
ddddddddd=








 

In general, the total number of permutations of adjacent spheres is 
)!1(!

)!1(

−

−+
=

nm

mn
C n

m , 

where n is total number of grain classes and m is the number of particles in each 

arrangement (three or four based on Frostick et al., 1984) so for n=10, and m=4 we will 

have 2860 different arrangements. If we assume mmddd 40,20,10,, 321 = , d the diameter 

of sphere which fits in the middle of 21 , dd and 3d is calculated based on equation (18): 

                                                 
x
 From the limit of flocculation possibility, or very fine sand d>0.0625 mm to very coarse gravel d>32 mm 

by the ratio 1:2:4:8…. 
xi

 The layer material percentage could be defined based on number, area, or volume(mass) of grains  
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( )( ) =++ 2

1

321321 dddddd                                                                      (18)                    

( )( ) ( )( ) ( )( )2

1

3232
2

1

3131
2

1

2121 dddddddddddddddddd ++++++++  

 

Figure 8: Filter Particles’ Arrangment in Densest State 

Each d will appear with probability P , which is the probability of occurrence of the 

group (dk, dl, dm) and by “independent trial process” in probability theory as defined by 

equation (17).  

Table 1:calculation of void size distribution base on grain size distribution 

Group )(mmd  P  P  Cumulative void ratio %          

111 ddd  1.55 
3

1p  0.015625 1.5625 

211 ddd  1.9 2

2

13 pp  0.065625 8.125 

311 ddd  2.2 3

2

13 pp  0.075 15.625 

221 ddd  2.35 
2

213 pp  0.091875 24.8125 

321 ddd  2.75 321 ppp  0.21 45.8125 

222 ddd  3.1 
3

2p  0.042875 50.1 

331 ddd  3.35 
2

313 pp  0.12 62.1 

223 ddd  3.8 
2

233 pp  0.147 76.8 

332 ddd  4.7 
2

213 pp  0.168 93.6 

333 ddd
 6.2 

3

3p
 0.064 100 

mmddd 40,20,10,, 321 =  and %40,35,25,, 321 =ppp  
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Figure 9: The void curve distribution for example 2  

 

So if the sand size particle is smaller than 1.55 mm, 100% of it will pass layer one and if 

its size is larger than 6.2 mm, it cannot penetrate the layer at all. Sizes between 1.55 and 

6.2 mm are able to enter the layer; at this stage we can let a portion of sand material enter 

the first layer, since we discretized the solution, and the portion of mass which is entered 

must be small compare to first layer’s mass distribution (say 5%). Some part of this sand 

will be trapped in the first layer and the remaining will penetrate into the second layer. If 

we can find the percentage which is trapped, we may update the layer’s void curve 

distribution for the next iteration and continue the procedure until there is no meaningful 

change in the mass of each layer. For example for particle d*=4 mm the percentage of 

confronting a void diameter greater that d* is (P=100-80=20%). Assuming that the 

encounters were carried out in an independent way, the probability that d* will go in n 

proofs be P
n
. Consequently, the probability that the particle d* will be stopped after n 

proofs is (1- P
n 

). If we assume a confidence level of Pc percent, that is, if we would like 

to have Pc percent of confidence that the particle will be stopped after n proofs we will 

have: 
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






 −
==

P

P

d

H
n c1

log
*

1

α
                              (19) 

where α is a coefficient (α>1) to make characteristic length to compare with layers 

thickness
xii

. The following flowchart briefly describes the approach to modeling the 

infiltration of sands in the coarser gravel bed-stream.  

 

Figure 10: Schematic of the algorithm for modeling sand infiltration in gravel bed 

                                                 
xii

 It can assumed as the method’s tuning factor 

Start 

Divide sand in to continuum packages, 

based on gravel layer's mass 

Calculate each gravel layer's probability of trapping for different 

classes of particles based on current particle distribution 

Add a sand package in to the bed layers 

Do any of sizes 

penetrate layer(s)? 

Packages 

finished? 

End 

Update the particle distribution of layer(s) 

Y N 

Y 

N 
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Chapter Three: Ongoing Work and Basic Results: 

 

3-1. Testing Method  

The style of coding is not only a vital issue in engineering practices and to deliver the 

correct results, but also it will be a crucial point in further modification in case of new 

theories, probable bugs, and expansions for additional capabilities. The ADR solver is 

coded with a professional plan adopted from software developing sciences:  

1) Deriving the mathematical schemes and solution approach.  

2) Design the coding in the modular structure. 

3) The documentation of coding is written at the same time inside the code, and produces 

by a post compiler.  

4) Writing the test unit for each individual unit in a mirror program which is designed for 

testing the ADR solver. 

The ADR solver is coded in the most modular way. As a result further modification can 

be applied at lower cost. The unit test will run automatically every often and tests each 

unit and functionality so tracing a defect would be easier. Finally a post compiler 

(Doxygen) will go through the code and make a pdf document from the comments of the 

author inside the FORTRAN program. The rest of the document is dedicated to the 

results of the ADR unit testing package.  

 

3-2. Advection  

At the beginning the Advection solver was coded based on the Flux-based Modified 

Method of Characteristics (MMOC) (Roache 1992), but due to the practical issues of 

back tracing the foot of characteristic in high Courant numbers and junction of channels.  

we decided to choose an Eulerian approach: Modified Lax Two Step Method
xiii

 (Leveque, 

2002) with a van Leer MUSCL flux limiter (Saltzman, 1994; Arora and Roe, 1997). The 

details of discretization are provided in the appendix A-1. Advection solver is an explicit 

solver which is 2
nd

 order accurate in both time and space.   

                                                 
xiii

 Detail of discretization in Appendix A-1. 
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Table 2: Test advection convergence subjected to tidal flow (Flux limiter off) 

Error  Convergence 

)(log2
Coarse

fine

L

L  

Note Number 

of 

nodes
xiv

 

1L  2L  ∞L  1L  2L  ∞L  

256 1.022E-5 1.82E-6 2.683-4 

2.805 3.22 2.75 

128 7.146E-5 1.698E-5 1.804E-3 

64 4.020E-4 1.263E-4 8.189E-3 
2.49 2.89 2.18 

CFL= 0.39 

Max Velocity = 

0.43 m/s 

Flux Limiter is off 

BC Neumann Zero 

Flux 

Table 3: Test advection convergence subjected to uniform flow (Flux limiter off) 

Error  Convergence 

)(log2
Coarse

fine

L

L  

Note Number 

of 

nodes 

1L  2L  ∞L  1L  2L  ∞L  

256 4.978E-6 6.03E-7 3.38E-5 

2.99 3.49 2.98 

128 3.95E-5 6.77E-6 2.66E-4 

64 3.08E-4 7.41E-5 1.99E-3 
2.96 3.45 2.90 

CFL= 0.59 

Max Velocity = 

1.11 m/s 

Flux Limiter is 

off 

BC Neumann 

Zero Flux 

 

 

Since in sharp gradients flux limiter switch the gradient from higher order to lower order 

approximation, error convergence ratios drop -in not smooth problems- as a consequence 

of activating the flux limiter. 

                                                 
xiv

 In mesh refinement convergence tests 
x

t
∆

∆ ratio was kept constant over a single test but was unique to 

each test. 
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 Table 4: Test advection convergence subjected to tidal flow (Flux Limiter on) 

Error  Convergence 

)(log2
Coarse

fine

L

L  

Note Number 

of 

nodes 

1L  2L  ∞L  1L  2L  ∞L  

256 2.18E-5   6.21E-6   1.91E-3 

2.39 2.47 1.49 

128   1.15E-4   3.44E-5   5.38E-3 

64 4.53E-4   1.77E-4   1.35E-2 
2.36 2.36 1.32 

CFL= 0.39 

Maximum Velocity 

= 0.43 m/s 

Flux Limiter: On 

BC Neumann 

Zero Flux 

 

3-3. Diffusion 

Diffusion governing equation is discretized in mass conservative form. Classic 2
nd

 order 

implicit Crank-Nicolson finite volume, face center approach was adopted
xv

. The details 

are provided in addendum. Diffusion of Gaussian distribution of mass, and the test case 

by Fletcher (1991)
xvi

 were tested with Dirichlet and Neumann boundary conditions. 

  Table 5: Diffusion of Gaussian hump of mass, subjected to Neumann BC  

Error  Convergence 

)(log2
Coarse

fine

L

L  

Note Number 

of nodes 

1L  2L  ∞L  1L  2L  ∞L  

256 
5.48E-6 4.09E-7 1.17E-5 

2.00 2.50 1.99 

128 
2.19E-5 2.31E-6 4.69E-5 

64 
8.77E-5 1.31E-5 1.87E-4 

2.00 2.50 1.99 

Mesh Peclet 

Number: 

   7.90 

D= 0.1 m2/s 

      BC Neumann 

analytical 

                                                 
xv

 Detail of discretization in Appendix A-2. 
xvi

 Appendix B. 
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  Table 6: Diffusion of Gaussian hump of mass, subjected to Dirichlet BC  

Error  Convergence 

)(log2
Coarse

fine

L

L  

Note Number 

of nodes 

1L  2L  ∞L  1L  2L  ∞L  

256 
1.14E-6   8.11E-8   2.08E-6 

2.00 2.50 1.99 

128 
4.56E-6   4.58E-7   8.34E-6 

64 
1.82E-5   2.59E-6   3.33E-5 

2.00 2.50 1.99 

Mesh Peclet 

Number: 

  7.90 

D= 0.1 m2/s 

BC Dirichlet 

analytical 

    Table 7: Diffusion of smooth hump of mass, subjected to Neumann BC  

Error  Convergence 

)(log2
Coarse

fine

L

L  

Note Number 

of nodes 

1L  2L  ∞L  1L  2L  ∞L  

256 1.11E-5   1.79E-6   5.29E-4 

1.99 2.50 1.98 

128 4.44E-5   1.01E-5   2.08E-3 

64 
1.75E-4   5.81E-5   7.80E-3 

1.98 2.52 1.90 

Mesh Peclet 

Number: 

0.131 

D= 10.5 m2/s 

BC Neumann 

analytical 

 

3-4. Reaction 

The reaction ODE solver is the adoptive Heun 2-3 order explicit which is implemented 

inside the advection solver to attenuate mass balance error which had been mentioned in 

literature (Valocchi 1992). The explicit Runge-Kutta 3
rd

 order and 2
nd

 order TGA 

(Twizell et al. 1996) for dealing with stiff source terms are also coded
xvii

.   

                                                 
xvii

 Detail of discretization in Appendix A-3. 
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    Table 8: ODE reaction solver test, Heun 2
nd

 order  

Error  Convergence 

)(log2
Coarse

fine

L

L  

Note Number 

of nodes 

1L  2L  ∞L  1L  2L  ∞L  

64 
1.280E-5   6.404E-6   1.280E-5 

2.01 2.50 2.01 

32 
5.142E-5   3.636E-5   5.142E-5 

16 
  2.071E-4    2.071E-4   2.071E-4 

2.00 2.52 2.00 

First order decay 

 

    Table 9: ODE reaction solver test, RK 3
rd

 order  

Error  Convergence 

)(log3
Coarse

fine

L

L  

Note Number 

of nodes 

1L  2L  ∞L  1L  2L  ∞L  

64 5.833E-7   2.916E-7   5.833E-7 

3.02 3.02 3.02 

32 4.727E-6   2.363E-6   4.727E-6 

16 3.879E-5    1.939E-5   3.879E-5 

3.61 3.61 3.61 

First order 

decay 
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Table 10: Coupling ODE reaction solver, 2
nd

 order and advection of mass 

Error  Convergence 

)(log2
Coarse

fine

L

L  

Note Number 

of nodes 

1L  2L  ∞L  1L  2L  ∞L  

64 1.91E-6   1.64E-7   
2.60E-5 

 
1.97 2.47 1.97 

32 7.47E-6   9.11E-7   1.02E-4 

16   2.91E-5    5.05E-6   4.04E-4 

1.98 2.47 1.96 

Linear  decay 

Max Velocity 

1.6 m/s 

CFL= 0.3  

 

3-5. Advection-Diffusion-Reaction  

Three operators are coupled directly (Godunov Splitting), for advection with uniform 

flow, linear decay and diffusion of a Gaussian hump of mass. Which are subjected to 

trivial constant flux (zero order approximation at far boundary). 

     Table 11: Coupling Advection Diffusion and Reaction Solvers (Flux Limiter off) 

Error  Convergence 

)(log2
Coarse

fine

L

L  

Note Number 

of nodes 

1L  2L  ∞L  1L  2L  ∞L  

1800 
2.417E-6   2.362E-7   7.28E-5 

1.91 2.41 1.90 

900 
  9.099E-6   1.257E-6   2.73E-4 

450 
  3.179E-5   6.213E-6   9.46E-4 

1.80 2.30 1.79 

Linear  decay 

CFL =   0.81      

Max Velocity =   

2.9 m/s 

Grid Peclet 

Num:    0.79 

Peclet #  

=85 
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Figure 11: Coupling Advection, Diffusion and Reaction with trivial zero flux boundary condition 

3-6. Advection-Diffusion-with Zero Order Boundary Condition  

In the next step the different intermediate boundary condition approximation will feed to model 

and the accuracy and convergence ratio will assessed based on the dimensionless numbers and the 

intermediate step BC approximations figure 7.  

Numerical Results and Exact Solution Are on Top of Each Other
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Figure 12: Coupling advection and diffusion with zero order implementation of intermediate 

boundary condition, L1 error norm convergence ratio drops from 1.91 to 1.02. 
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Table 11 shows the result for zero order approximation of intermediate BC for coupling the 

Advection and Diffusion.   

     Table 12: Coupling Advection and Diffusion Solvers with first Order approximation of the 

Intermediate Boundary Condition  

Error  Convergence )(log2
Coarse

fine

L

L  Note Number 

of nodes 

1L  2L  ∞L  1L  2L  ∞L  

512 1.19E-03 

 

1.12E-04 

 

9.65E-03 

 
1.02147973 1.52105 1.02148 

256 
2.46E-03 3.29E-04 1.77E-02 

128 
5.38E-03 1.05E-03 3.93E-02 

1.04264434 1.54102 1.03562 

CFL =   0.75      

Max Velocity 

=   2.9 m/s 

Flux Limiter: 

Off 

Grid Peclet 

Num:    0.79 

Peclet 

Number
xviii

  

=120 
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Figure 13: System of ODEs solved by the RK3 subroutine; finding the attractors (Zamani, 2010) 

                                                 
xviii

 Here the characteristic length was chosen as the domain length. 
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Appendix A-1: Advection, Lax Two Steps Method 
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A,Q,S, and Ks are known from other parts: 

A and Q from HYDRO 

Ks from Diffusion 

S (Sink and source come from decay, deposition and entrainment)   
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2- Second half step: 
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Figure A1: schematic of lax two step method 

 

Flux limiter: 

Flux limiters (slope limiters) are used in high resolution schemes, to avoid the spurious 

oscillations (wiggles) that would otherwise occur with high order spatial discretization 

schemes due to shocks, discontinuities or sharp changes in the solution domain. 

van Leer (1977) flux limiter is one of the widely used limiters, which guarantees no new 

maximum/ minimum formed, and it could be formulated as follows for coding proposes: 

(Saltzman 1994). 

1- Second order van Leer flux limiter: 
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And the limited flux will be: 
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2- Fourth order van Leer flux limiter:  
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Note: 1+∆ iiu  and 1−∆ iiu  are the u which are already 2
nd

 order flux limiter applied 

on them  

And the limited flux will be: 
dx

ui∆
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Appendix A-2: Diffusion, Crank-Nicolson Method 
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  is unknown in (A2.2) and other terms are known from measurements or  

previous step. 
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1- Neumann Boundary condition implementation  

 

 

 

Just by replacing F in the first and last diffusive flux Neumann Boundary condition will 

be implemented 
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• Last row: i=m 
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2- Dirichlet Boundary condition  implementation  

We assume the C is known on the face of first/last cells (edges of channel)  

 

Figure A2: Schematic of boundary condition implementation 
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 where b, d, c(1/2) and c(3/2) are unknowns. 

If we eliminate d between equations 2, and 3  above, regardless of time. 
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The only known value in the above is c* = c at the boundary, by replacing in (A2.6-7) we 

may compute the changes in coefficient and right hand side matrices.  

2.2- c(x) = a + bx (linear) 
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1- at x=0 � c(0) = a + b(0) = c* 

2- at x=∆x/2 � c(1/2) = a +b∆x /2  =c* + b∆x /2 

� b =  (2c(1/2) – 2c* )/ ∆x 

where b and c(1/2) are unknowns and C* is the known value of the boundary  
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The right boundary, 
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• Middle row: is the same as previous case 

• First row : i=1 
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• Last row: i=m 



 

 42 










∆

∆
+




 −

∆

∆−
−

=
















×








∆

∆
+

∆

∆
+

∆

∆−

++

+−+

×

+

+
−

×

+

−

+

+

++

−

11

2
12

2
1

*

2
1

12

1

1

1

21

1

2
12

1

2
12

11

2
12

*
2)1(

)(
2

)()(

nn

m

n

m

n

m

n

m

n

m

n

m

n

ms

n

ms

n

m

n

ms

CAK
x

t
FF

x

t
AC

C

C

AK
x

t
AK

x

t
AAK

x

t

θθ

θθθ

  (A2.14) 



 

 43 

Appendix A-3: ODE Integrators 
• 2

nd
 order Heun method: 

                                                                                            (A3.1) 

  
• Runge-Kutta adoptive 3rd Order: 

This method is a third order Runge-Kutta method for approximating the solution of the 

initial value problem (Bogacki and Shampine, 1989). 

 
which evaluates the integrand, f(x,y), three times per step. For step i+1, 

This method is a third order procedure for which Richardson extrapolation can be used. 

                                                                                    (A3.2) 

 
• Nystrom Method 3rd order  

                                                                                (A3.3) 

 
• Optimum method 3rd order  

                                                                                (A3.4) 

 
• Heun 3

rd
 order 

                                                                                            (A3.5) 
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Adaptive step size ODE integrator 

A good ODE integrator should exerts some adaptive control over its own progress, 

making frequent changes in its step size. Usually the purpose of this adaptive step size 

control is to achieve some predetermined accuracy in the solution with minimum 

computational effort. The whole transport engine is coded double precision so our goal in 

solving the stiff source terms is we could achieve a precision equal to or higher than the 

other parts (in our case epsilon = 10
-10

). The strategy to find the required length of sub-

step-which ends up to a preset accuracy- is called Richardson Extrapolation.   

The principle definition of “order of convergence” is based on behavior of the error of 

discrete solution. There are various measures (L1, L2, L∞), but in some sense we are 

always referring to the difference between discrete solution f(∆) and the exact solution: 

exactffE −∆= )(                                                                                                            (A3.6) 

For an order p method, and for a well-behaved problem, the error in the solution E 

asymptotically will be proportional to P∆ . This terminology applies to every “consistent” 

methodology regardless of solution smoothness, thus 

TOHCffE
P

exact ..)( +∆=−∆=                                                                                   (A3.7) 

where H.O.T are higher order terms. 

Example: 

Let’s assume we run the 2
nd

 order Huen method with step size ∆t = 0.2 and receive an 

approximation of 6.59862478489, and then we run the same solver for the step size ∆t = 

0.1 and received an approximation of 6.59854357165. The question is if we are seeking 

the solution with the accuracy of 10
-8

 what is the integration step size?    

TOHCu

TOHCu

exact

exact

..)2.0(4896.59862478

..)1.0(1656.59854357

2

2

++=

++=
 

Subtracting the above we have: 

0..)1.0()2.0(40000812132.0 22 =+−+ TOHCC  

002707108.0003.040000812132.0 −=⇒≈+ CC  

So to achieve an error of  10
-8 

 with Heun 2
nd

 order integrator we need: 

⇒=∆+∆ −832 10)()( tOtC  00192.0
00270718.0

10 8

=≤∆
−

t  
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Appendix B: Benchmark Analytical Solutions 

 
1. The Advection Diffusion Reaction equation: 

                                                                                    (B.1) 

Has an analytical solution of: 

                                                                                               (B.2) 

The initial and boundary condition could be derived from (B-2), (Sobey 1989; Khan and 

Liu 1995) 

2. ADR solution by Zoppou and Knight 1997: 










∂

∂

∂

∂
=

∂

∂
+

∂

∂

x

txC
xD

xx

xutxC

t

txC ),(]),([),( 2

0
0

                                                              (B.3) 

This is subjected to: 
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3. ADR solution by Fletcher (1991): 
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                                                                                                                    (B.5) 

Has the analytical solution of: 
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The initial and boundary condition could be derived based on (B.6).
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4. Analytical solution of tidal forcing in a rectangular basin (Wang et al., 2009) 

Governing equation in 2D (X-Z): 

1-Continuity 

 

 

Assumptions:  

• u, is not function of z but vertical velocity w is a function of z 

• H is constant  

• Ζ << H 

2- Momentum  

 

Assumptions: 

• Inviscid fluid ( interfacial  and bottom friction are neglected) 

• Ρ=constant 

• Non-rotating reference frame (f=0) 

•  

•  

 

 

  

Integration will result in: 

 

Subjected to the boundary condition u(L,t)=0 
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K0 must be calculated base on boundary conditions 

@t=0 :  
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Appendix C-1: Sediment Entrainment and Deposition Functions  

Under appropriate simplifying assumptions, the one dimensional St. Venant shallow 

water equation takes the form: 

lateralq
x

UA

t

A
=

∂

∂
+

∂

∂

                                                                                             (C1.1a) 
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                                                            (C1.1b) 

Where; t: time; x: boundary-attached (bed attached) streamwise coordinate; g: 

gravitational acceleration; S: bed slope which is given;
x

S
∂

∂
−=

η
;Cf: bed friction 

coefficient. The river assumed to carry a dilute suspension of sediment. An approximate 

form of depth averaged conservation of suspended sediment is as follows: 
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Where; vs: is the sediment fall velocity, Er: sediment entrainment rate, Es: dimensionless 

rate of entrainment of bed sediment into suspension, Es≡ Er / vs , Dr: volume rate of 

deposition per unit time per unit width,  bc = near bed value of Crc 0=  

In the steady, uniform turbulent flow over a flat bed the net vertical flux (Fsz) of sediment 

just above the bed is given by: 

)( bssrrbzsz cEvDEF −=−=
=

                                                       (C1.3) 

erosionnoF

depositionnoF

sz

sz

:0

:0

>⇒

<⇒

 

If equilibrium steady uniform suspension rate exists, there is no net normal flux of   

suspended sediment at the bed. The equilibrium condition yields  0=szF , bs cE =  

hence the entrainment rate will be given by bc . 

There are many formulas for concentration sources near bed, the following formulas were 

widely recommended in the literature: 
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Entrainment Formulas    

1. Garcia and Parker  

In 1991, Garcia and Parker suggest the following formula:  

5

5

3.0
1 u

u

s

Z
A

AZ
E

+

=                                                                                                       (C1.4) 

Es= Sediment entrainment coefficient 

-710 1.3 A ×=                                                                                            (C1.4.1)
 

6.0* Re p

s

u

u
Z

ν
=                                                                                                         (C1.4.2) 

Zu is a measure of the shear stress strength but it also takes into account the particle size. 

Here reference level is taken to be 5% of the depth. 

mU
C

g
u

′
=

5.0

*                                                                                           (C1.4.3) 

u* : shear velocity 

tCoefficienChezy
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R
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b
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



=′

3

12
log18                                                     (C1.4.4) 

Um= is the cross sectional flow velocity 

Rb= Hydraulic radius of channel  

 vs= sediment fall velocity (will discuss later in this appendix) 

5.3ReRe <= pp and
DRgD

ν
                                                       (C1.4.5) 

Rep is particle Reynolds number  

                                                                                         (C1.4.6) 

 

R is specific submerged gravity (1.65 for quartz particle), g = Gravitational acceleration, 

D = D50 . 

In Garcia and Parker (1991) a comparison of many of other entrainment formula 

could be found. They have found that the relation (C1.4) works well for fine-grained non-

cohesive sediments.  

2. van Rijn 

ρ

ρρ −
= sR
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Another formula that has been found to perform well is that of van Rijn (1984b). 
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ks=3D for uniform material (is effective roughness height), ∆ is a bed forms height and 

b=ks when bed forms height is unknown, H: Total depth of flow, d*= is dimensionless 

particle parameter , bc : Reference concentration for equilibrium case (near bed value of 

mean volumetric sediment concentration),
ρ

ρρ −
= sR , Ds= D50, g = Gravitational 

acceleration, Note: here 
*

cτ denotes the dimensionless Shields stress due to skin friction 

(mobility parameter) 

RgD

bs
s

ρ

τ
τ =

*
                                                                                                 (C1.5.3) 

2
UC fsbs ρτ =                                                                                         (C.15.4) 

bsτ  is the shear stress caused by skin friction  

2
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C

κ
                                                                                           (C1.5.5) 

In which, Cfs is the resistant coefficient, ks is the effective roughness height, κ = von 

Karman constant (0.41), this formula has been used extensively in numerical treatment of 

suspended sediment transport (Duan et al., 2001; Zeng et al., 2006).  

3. Smith and McLean  

Third equation which performs well is by Smith and McLean (1977). This equation is 

based on Yalin early works (1963). 
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Where, bc : Reference concentration for equilibrium case, 0024.00 =γ , and the value of b  

(height in which the bc is to be evaluated) is given by the following: 

scs kDb +−= )1/(3.26 ** ττ                                                                                  (C1.6.1) 

ks= is the equivalent roughness height for fixed bed  
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*
                                                                                                  (C1.6.2) 

*

sτ is the dimensionless stress due to skin friction 

2
UC fsbs ρτ =                                                                              (C1.6.3) 

bsτ  is the shear stress caused by skin friction 
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Here Hs is the depth in absence of bed forms (Hs+Hf=H) and Hs it could be expressed as:  
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κ = von Karman constant (0.41), Ks is the effective roughness height, S: energy slope, 

*

cτ is dimensionless critical Shields shear stress for incipient motion (Appendix C-2). 

The Smith and McLean formula is used extensively in benthic boundary layer flows and 

oceanic sedimentation (McCave, 2004). 

4. Zyserman and Fredsoe 

After the comparative analysis of different entrainment formulations, in 1994 Zyserman 

and Fredsoe proposed an empirical relation (C1.7) using the Fort Collins experimental 

data.  
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bc  here is referred to concentration at b=2D50, 

RgD
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s

ρ

τ
τ =

*
, 

*

sτ is the shields stress due to skin friction 
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2
UC fsbs ρτ =                                                                                                          (C1.7.1) 
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Here Hs is the depth in absence of bed forms, (Hs+Hf=H) and Hs could be expressed as: 
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κ = von Karman constant (0.41), S=energy slope, ks is the effective roughness 

height,
*

cτ is dimensionless critical Shields shear stress for incipient motion.  

This formula is based on laboratory data, but it has been used widely in costal 

engineering practice (Soulsby, 1997). 
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Appendix C-2: Fitted Formula to the Shields Diagram 

C2-1: Brownlie (1981) 

( )06.6.0*
77.17exp06.022.0 −− −+= epepc RRτ                                                          (C2.1) 

Where; Rep is particle Reynolds number, 
ν

DgRD
Rep = , 

ρ

ρρ −
= sR , D= D50,   g: 

gravitational acceleration, ν: kinematic viscosity of water, 
*

cτ is dimensionless critical 

Shields shear stress for incipient motion. 

C2-2: Mantz (1977) 

For fine-grained sediments Shields diagram does not provide realistic results. Mantz 

conducted a series of experiments and observed that for fine grained non-cohesive 

sediments the critical shear stresses can be estimated with the following relation 

   16.3056.0135.0 261.0*
<<= −

epepc RRτ                                                         (C2.2) 

The Mantz equation merges Brownlie equation for Rep=4.22 



 

 54 

Appendix C-3: Fall Velocity  

Fall velocity or settling velocity is a fundamental property of a sediment particle. 

Falling under the gravity action a particle will reach a constant, terminal velocity once the 

drag is equal to the submerged weight of the particle. The range of particle sizes can be 

categorized in three following sizes: 

a) Medium and coarse sand, gravel, cobble, and boulder; ds>0.1 mm which must be 

calculated with Rubey’s approximation of fall velocity (Stokes’ law is not valid for them) 

 b) Very fine Sand and Silt; 0.1 mm >ds > 0.004 mm which can calculate by Stokes’ law. 

c) Clay; which is also calculated by Stokes’ law but flocculation is possible.   

Stokes’ law: 

It is valid for small particle size (ds<0.1 mm) falling in viscous fluid (Rep<0.1)  

1.0
)1(

18

1 2 <
−

= epss Rd
gG

v
ν

                                                              (C3.1) 

G is specific gravity and, 65.2==
ρ

ρ sG  for quartz particle. 

Rubey’s Formula: 

Rubey’s approximation formula (C3.2) of fall velocity in clear water is based on drag 

coefficient of sand particle equation (C3. 3): 
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mν  is the kinematic viscosity of water-sediment mixture, d* is the dimensionless particle 

diameter, both Rubey’s and Stokes’ formula yield practically same results for the cases of 

Reynolds numbers less than one, so all the settling velocities will be calculated base on 

Rubey’s approximation 
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Appendix C-4: Cohesive Sediment  

Introduction: 

Fine grained sediment transport is generally characterized by size composition, 

and plasticity. Cohesion is due to electrochemical forces acting on the particle surface. 

Hence the degree of cohesion depends on the ratio of particle surface area to particle 

weight, that is, specific surface area. Migniot (1968) showed ratio of particle settling 

velocity to particle size increases due to floc and cohesion. 

A characteristic gauge of clay mineral cohesion is cation exchange capacity (CEC). The 

higher the CEC the greater the cohesion, which causes micro-meter-sized individual clay 

particles to coagulate or flocculate, in water to form much larger aggregates, or flocs 

when water salinity exceeds a critical value which depends on the clay mineral. 

Kaolinite, illite, chlorite, and montmorillonite are the most commonly found clays, in the 

San Francisco Bay estuary Chlorite were found (Krone, 1962). As salinity increases 

above the critical value, floc size density, and strength vary. However, above a salinity of 

about 10 ppt, its effect on the floc properties is comparatively minor (Krone, 1962; 1986) 

and there is no need to take it into calculation. 

Table C1: Clay Minerals. CEC, and Critical Salinity for Flocculation 

Clay mineral Nominal  

Diameter (µm) 

CEC 

  (meq/100 g) 

Critical Salinity 

 (ppt) 

Kaolinite 0.36 3-15 0.6 

Illite 0.062 10-40 1.1 

Chlorite 0.062 24-35 Not reported 

Montmorillonite 0.011 80-150 2.4 

 

To make assessing of transport related data possible, the basic parameters of floc 

in cohesive sediment should be defined. Regarding the fact that the cost of evaluation of a 

large number of parameters is not feasible in most technical studies, finally six 

parameters have been chosen to be representative of characterization of sediment in the 

situation in which the transport is not overwhelmingly influenced by biochemical factors; 
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• Particle size: use the standard procedure of (ASTM 1993d), settling column bottom 

withdrawal test. If the organic content is greater than 10%, this test shouldn’t perform 

• Fall or settling velocity.  

• Mineral decomposition: obtain types of relative quantities of the principle clay and 

non-clay minerals using standard X-ray diffraction tests. 

• Organic content: Loss of sample mass on ignition standard test (ASTM 1993d) An 

alternative is to measure total organic carbon. 

• Cation exchange capacity: follows standard procedure for clay minerals (ASTM 

1993c, SCS 1992)  

• Salinity: report salinity if less than about 10 ppt, At higher salinity the effect of 

salinity on floc structure is comparatively minor. 

Settling velocity of cohesive sediment 

For hindered settling of mud flocs, Mehta (1986) suggested a modified for of the well 

known Richardson and Zaki formula: 

n

pss kvv )1(0, φ−=                                                                                                     (C4.1) 

 where vs is the effective settling velocity, vs,0  the settling velocity of a single particle in 

still water, k is an empirical parameter, φp is volumetric concentration of primary particle, 

φp= C/ρs in which C is the mass concentration and ρs the density of the sediment. 

Winterwerp (2002) reasoned that the rational embedded in (C4.1) can be applied to 

cohesive sediments as well. He suggested that, as each individual floc within a 

suspension is considered to settle in the rest of the suspension, this would result in three 

hindering effects: 

1- Return flow and wake formation. A settling particle generates a return flow and a 

wake. Other neighboring particles will be influenced by this and their effective 

settling velocity will be decreased by a factor (1- φ), where φ is the volumetric 

concentration of flocs. 

2- Viscosity. Each individual particle within a suspension is considered to fall in the 

remainder of that suspension which has an increased viscosity. 
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3- Buoyancy or reduced gravity. For the same argument, an individual particle settles in 

a suspension with an increased bulk density. The effective settling velocity is 

decreased by a factor of (1-φp). 

This led to a new theoretically derived formula for the hindered settling of mud flocs: 

φ

φφ

5.21

)1()1(
0,

+

−−
=

p

m

ss vv                                                                                          (C4.2) 

where vs is the effective settling velocity, vs,0  the settling velocity of a single particle in 

still water. The volumetric concentration is herein related to the gelling concentration 

(φ ≡ C/Cgel), in which Cgel is the concentration at which flocs become space-filling and 

form a network structure, called a gel, and a measurable strength build up. The 

volumetric concentration of primary particles is also related to the gelling concentration, 

sgelsp cc ρϕρφ // ==  

Here the )1( φ− accounts for the return-flow effect, )1( pφ− accounts for the buoyancy 

effect and )5.21( φ+ accounts for augmented viscosity. The exponent “m” is an empirical 

parameter to account for possible non-linear effects. When the return flow effect is linear 

(m=1) only the volume effect of a suspension settling in a liquid is taken into account. 

The downward flux of sediment is thus expected to create an equal upward flux of water 

with sediment. When nonlinearity is taken into account, all the effects generated by a 

settling particle in a suspension are incorporated. 

Winterwerp (2002) compared Eq (C4.2) to data by fitting the model parameter and not 

actually using parameter values derived from data. A reasonable fit was obtained. 



 

 58 

Appendix D: Metrics for Determining Accuracy in CFD 

When we are dealing with numbers we can identify them as being large or small. 

Arrays and vectors are functions of many elements but we need to measure their size -an 

index for them to be small or large. Norms are used as a measure in this context. 

Realizing that the size of a vector or matrix should depend on the magnitude of all 

elements in the arrays, we arrive at the definition of vector and matrix norms. By 

definition, a norm is a single number that depends on the magnitude of all elements in the 

vector or matrix. A norm for vectors should satisfy the following conditions: 

1- .000 ==≥ vifonlyandifvandv
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                               (D.1) 

2- .cscalaranyforvcvc
rr

=                                      (D.2) 

3- .wandvvectorsforwvwv
rrrrrr

+≤+                                (D.3) 

The equation (D.3) is the triangle inequality. The following three vector norms are 

commonly used and called the infinity, one and two vector norms: 
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In our case we can define v as the error between U exact and U numerical at each point (Bathe, 

1996). 

If we can find constants p ≥ 1 and c > 1 such that 
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1
lim                                         (D.7) 

we say that convergence is of order p. If p=1 convergence is linear and the rate of 

convergence is c, in which c must be smaller than 1. In solution procedures using vectors 

and matrices we also need a measure of convergence. 

  It can proven that ∞≤≤ LLL 12 , or in the other words ∞L is the most restrictive 

norm and the 2L  is the most forgiving norm among these three (Kollmann, 2009). 2L  is 
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sometimes also called energy norm and it denotes the scatter index between the 

benchmark and the other dataset. 1L  denotes the average error in the domain and ∞L  

shows the worst case. It is generally impossible to obtain a simple closed form expression 

for the global error after hundreds or thousands of time steps. Instead of trying to obtain 

the error directly, the approach that is widely used in the study of numerical methods 

consists of a two-pronged attack on the problem: 

• Study the error introduced in a single time step, showing that the method is consistent 

with the differential equation and introduces a small error in any one step. 

• Show that the method is stable, so that these local errors do not grow catastrophically 

and hence abound on the global error can be obtained in terms of these local errors. 

If we can get a bound on the error in an appropriate sense, then stability can be used 

to convert this into a bound on the global error that can be used to prove convergence. 

Moreover, we can generally determine the rate of convergence and perhaps even obtain 

reasonable error bounds. The fundamental theorem of Godunov
xix

 type numerical 

methods for partial differential equations (Lax Equivalence Theorem) can then be 

summarized briefly as (Leveque, 2002): 

Consistency + Stability ⇔  Convergence 

So the mesh refinement convergence study must be done for the different processes to 

confirm both consistency and stability (Fletcher, 1991; Roache, 2009). 

 

 

    

                                                 
xix

 The Lax Theorem is rigorously proves for FDM, but it is valid for FVM. Also some people take it true 

for FEM (See Fletcher, 1991).  


