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Abstract 

 This research is on using recent techniques of Software Quality Assurance (SQA) and 

developing Verification and Validation and Uncertainty Quantification (VVUQ) tools to improve 

mathematical models of contaminant, sediment, and air-bubble transport in natural aquatic 

bodies. A comprehensive toolkit for VVUQ is developed for: a) code and calculation verification 

with Methods of Exact Solutions (MES), Method of Manufactured Solutions (MMS), and cross-

code verification; b) Richardson extrapolation for code and calculation verification; c) model 

validation via common statistical methods and model skill assessment metrics; d) quantification 

of uncertainty in numerical discretization of PDEs. In the next section of this dissertation, seven 

new closed-form analytical solutions of scalar transport equation devised for code verification 

with MES. The set of developed analytical solutions was complete in the sense that it is able to 

check nonlinearity as well as spatial and temporal non-homogeneity in all terms of scalar ADR 

equation. In addition, a 2D analytical description of air-bubbles distribution in hydraulic jumps 

was derived. The new analytical model was validated versus various empirical datasets via 

common model skill assessment metrics. The experimental dataset was also used to design an 

analytical-empirical model for air entrainment/detrainment in the two-phase flows of hydraulic 

jumps. In the rest of this dissertation the emphasis was changed from two-phase flows of air and 

water into two-phase flows of sediment particles and water. First, a comprehensive assessment of 

former methods of computing total sediment discharge with Einstein’s method was conducted. 

Sequential and parallel subroutines of computing the Einstein’s integrals with existing methods 
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developed. Then local and global accuracy, convergence behavior, singularities, CPU time and 

parallelization efficiency were studied via common metrics of model skill assessment. Second, 

four new methods of computing Einstein’s integrals for calculation of total sediment discharge 

were devised: a) a numerical technique which exploits the similarity of integrand functions to 

devise a numerical recycling of values for reduction of computational time; b) nested adaptive 

Gauss-Kronrod quadrature; c) perturbation techniques to find a fast asymptotic series 

representation to approximate the Einstein integrals; d) semi-analytical solutions based on Gauss 

hypergeometric function. All of the developed methods were benchmarked against machine-

precision-accurate results. Efficiency of those new methods in parallel computing was evaluated. 
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Chapter 1: Introduction 

1.1. Purpose 

 River, estuarine, wetlands and vadose-zone transport phenomena have tremendous 

implications on environmental processes, and therefore on ecosystem health. As a consequence, 

they have notable implications on local economies, agriculture, and on management and 

planning of coastal civil works. Numerical models are often used to increase our understanding 

of contaminant transport, water quality and sediment transport processes, and to solve practical, 

crucial problems associated with tidal marshes environments. Numerical models are relatively 

inexpensive and they are employed as an essential tool by operators, decision makers and 

regulators in different estuaries of the world. In particular, diverse numerical simulations of flow 

and water quality have been developed to date, many directly or indirectly addressing transport 

phenomena in environmental aquatic body.   

 In the last decades of the 20
th

 century, computational power increased dramatically and 

numerical “modeling” to some extent substituted experimentally driven knowledge acquisition.   

Comparison of the design process of e.g. the Boeing 727 in the 1950s and the Boeing 787 in the 

2000s reveals the severe changes that have occurred in the design and analysis tools over five 

decades. The former was completely designed based on analytical methods and wind tunnel 

testing, whereas 85% of the latter was designed and tested with computational soil/fluid 

mechanic codes (Hale, 2006; Oberkampf and Roy, 2010). As computational methods continue to 

play a larger role in the world of science and engineering, crucial questions arise: How far we 

can trust a model? And if there is an error is it does it originate in computational flaws? or in the 

models inherent structure? or uncertainty in parameters and initial/boundary conditions. The 
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methods to assess reliability of numerical models are basically developed for Nuclear 

Engineering Safety and Aeronautical Science in 1990s (Roache, 2009; Oberkampf and Roy, 

2010). The main stream of this research is about putting light on the questions of reliability of 

numerical codes for environmental fluid mechanics. In particular, I study models of sediment 

transport and air-bubble water mixture in surface water and passive scalar transport in tidal river 

networks. 

 This research has two major parts; in one I developed tool/methods for verification and 

validation, uncertainty quantification (VVUQ) of transport numerical models and in the other I 

used toward designing more efficient models for two-phase flows of sediment and water and 

oxygen and water mixtures. A brief overview of this dissertation is given in the next section. 

1.2. Organization 

 This dissertation is divided into eight chapters. A short overview of motivation and 

organization of the study is presented in this chapter. The second chapter is literature review and 

has two parts: first, review of pollutant transport modeling in unsaturated zone, and second 

review of sediment transport modeling in shallow-water vegetated tidal marshes and wetlands. 

The former is published in “Chow’s Handbook of Applied hydrology, 2
nd

 Edition” by Vijay 

Singh as a book chapter. The latter is accepted for publication in special issue on wetland 

modeling in ASCE-Journal of Hydrologic Engineering. 

 Chapter three devised methods for verification of one dimensional scalar transport 

equation. Methods in that chapter are comprehensive and can be employed to check any 

nonlinearity or non-homogeneity in the solver. This chapter in published as a research article in 

Journal of Environmental Fluid Mechanics in 2014. 
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 Chapter four is on comprehensive validation of methods of computing total sediment 

discharge with Einstein’s integrals, which has been done in parallel and sequential computing. 

Chapter five is the following of the work of chapter four, which is designing new methods for the 

same purpose and again validation of them via common model skill assessment metrics. Chapter 

for is under review in ASCE Journal of Hydraulic Engineering as a technical note and chapter 

five is submitted to the same journal for possible publication as technical paper.  

 Chapter six is on analytical and empirical models for description of air distribution in 

hydraulic jumps. In this chapter I validate my developments versus experimental data from 

various sources. This chapter will be submitted to the special issue of two-phase flow in the 

Journal of Environmental Engineering. 

 Chapter seven is on a novel toolkit for general purpose verification, validation and 

uncertainty quantification (VVUQ). I discussed the basic equations and provide five examples to 

introduce the new open source software. The martial presented in this chapter will be submitted 

to the Journal of Computers and Geoscience. The final chapter (chapter eight) summarizes key 

findings and presents conclusions and suggestions for future path of research. This dissertation 

has two appendixes: A) on the application SQA techniques in development of a transport code 

test suite. B) on the hydrogeological characterization, both has been published. 

Chapter One References 

1. Oberkampf, WL, Roy, CJ (2010) Verification and validation in scientific computing. 

Cambridge University Press, Cambridge  

2. Roache, PJ (2009) Fundamentals of verification and validation. Hermosa Publishers 

3. Hale, J (2006). Accessed online on 12/01/2015, http://www.boeing.com/commercial/ 

aeromagazine/articles/qtr_4_06/AERO_Q406_article4.pdf   
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Chapter 2: Review of Contamination and Sediment Transport 

Modeling in Vadose Zone, Wetlands and Marshes  

2.1. Pollutant Transport in Vadose Zone
1
 

 The vadose zone extends downward from the terrestrial land surface to the groundwater 

table. In this zone soil pores are filled with both air and water, and depths can range from zero as 

in wetlands and marshes, to hundreds of meters in arid areas. Movement of water, vapor, 

chemicals and microbes through the vadose zone controls groundwater recharge rates and 

quality, surface runoff and flooding, surface and subsurface ecosystem community dynamics, 

and agrichemical impacts to groundwater. The vadose zone often serves as a buffer because 

through the processes of infiltration, evapotranspiration, and redistribution, infiltrating aqueous 

solutions are exposed to air, mineral, and biotic phases that can attenuate groundwater pollution 

impacts from surface activities. Therefore, understanding of transport in the vadose zone is 

essential in water quality management, soil and irrigation management, and preventing 

groundwater contamination. In this chapter firstly we briefly review the basic processes that 

govern flow and transport of solutes and suspensions in the unsaturated zone, and secondly we 

consider analytical and numerical techniques of quantifying transport in unsaturated zone. The 

scope of this brief review is restricted to continuum-mechanical representations of aqueous flow 

and transport processes, and does not cover phase change, soil-matrix deformations, pore-scale 

representations or transport via vapor or other (multiple) phases. As most problems associated 

with pollution of infiltration water focus on vertical flow, we restrict our consideration to vertical 

infiltration processes. 

                                                           
1 Section 2.1 of Chapter 2 was accepted for publication as a book chapter: Zamani, K, and Ginn, T.R. (2016) 
“Pollutant Transport in Vadose Zone” Chapter 68 in “Chow's Handbook of Applied Hydrology, Second Edition” Ed. 
Vijay Singh, McGraw-Hill. 
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2.1.1. Water potential in the unsaturated zone 

 Soil water potential (in energy per self-weight, units of length) is a convenient collection 

of causes for water to move to another location in a soil matrix into a single quantity h: 

ℎ = �� + �� + �� + ��          (2-1) 

where �� 	is the solute (or osmotic) potential, �� the electrochemical potential, �� is gravimetric 

potential equal to elevation z, and �� is matric potential. The matric potential (or tensiometer 

pressure potential) describes the effects of all the forces on the soil water other than gravity and 

solutes (Jury and Horton, 2004, p. 54-55), In sandy media, the matric potential is primarily due 

to presence of the air-water interfaces in the porous matrix, that leads to a jump discontinuity 

between pressures in the air and water phases called the capillary pressure, so that 
� = 
� − 
� 

With air pressure assumed constant and set to zero (‘gage’ pressure), the water phase pressure is 

negative and the matric potential is commonly defined as �� = 
�/(��) where � is the water 

density and g the acceleration due to gravity. For practical concerns solute and electrochemical 

potentials are usually considered spatially and temporally invariant (Hillel, 1998), so that the 

total potential of water in the vadose zone is commonly written as ℎ = −�� + �� = − ��
�� + �. 

“Matric suction” �� is defined as the negative of the pressure head, −
�/(��). Note that as we 

approach the water table from above the (negative) 
� increases to zero (gage pressure) so that at 

the water table ℎ = �. 

2.1.2. Governing equation of flow in vadose zone 

 Vertical flow of water in unsaturated soil satisfies mass (here volume) conservation 
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��
�� = − ��

�� − �            (2-2) 

In which, � is the volumetric water content [ ! !], t is time [#], �	is vertical coordinate [$], %	refers 

to flow per unit area [ &], and � accounts for all forms of sink and source '(&), for example root 

uptake. Combining Eq. (2-2) with the Darcy law in z direction % = −* �+
��	 gives:  

��
�� = �

�� '* �+
��) − �	          (2-3) 

where * is unsaturated hydraulic conductivity of the soil [ &] and ℎ is total soil-moisture potential 

[$]. Expanding the total potential in Equation (2-3) yields: 

��
�� = �

�� '*(�) ,− �-.
�� + �-/

�� 0) − � = − �
�� ,*(�) �-.

�� 0 + �
��*(�) − �   (2-4) 

where we have used the fact that �� = �. Equation 4, known as Richards’ equation, is the partial 

differential equation (PDE) governing the vertical flow of water in variably saturated soil. On the 

right hand side, the first term reflects flow of water by matric forces, that can dominate e.g. 

during infiltration into a dry soil, where the force draws water from wet locations toward drier 

locations. The second term reflects the flow due to gravity. In cases where the first term 

dominates the resulting equation is one of nonlinear diffusion; in cases where the second term 

dominates the matric term may be ignored and the resulting equation is a kinematic wave 

equation (Charbeneau, 2006). In the derivation of eq. (2-4) we assumed constant temperature, 

constant air pressure and no resistance to water flow due to the air phase, non-deformable soil 

structure, incompressible water, and dilute solute (constant water density).  
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2.1.2.1 Soil-water characteristic curves  

 Equation (2-4) requires closure by specifications of functions linking � to ��	and	*	to �. 

The former is defined through the soil-water characteristic curve (SWC), �4��5 (or ��(�)), that 

defines the amount of water retained in a particular soil at a given matric potential. The SWC 

curve shape is related to the distribution of size and connectivity of pores in soil structure. Figure 

2-1 shows generic SWC curves for soils of different textures, particle size and pore size 

distributions. Soil-water characteristic curves are 

nonlinear and not easy to measure. 

 The SWC curve typically exhibits 

hysteresis behavior as noted in the insert in 

Figure 2-1, due to water entrapment during 

drying and air entrapment during wetting 

(Charbeneau, 2006). The main cause of 

hysteresis is known as the "ink bottle" effect. In 

the drying phase water is drained from pores, 

however, narrow necks tend to keep large pores 

filled at suctions above that which would drain 

them. Analogous mechanism occurs during 

wetting. A second phenomenon is the "rain drop" 

effect, the contact angle of water and soil 

particles is greater when the water front is 

advancing (wetting cycle) as opposed to the time it is retreating (drying cycle). This phenomenon 

 

Figure 2-1. Schematic of Soil-water characteristic 
curve, shown for generic cases of sandy or clayey 
soils. Both curves reach water contents equal to 
porosity when suction is zero (at the water table). 
Matric suction is defined as the negative of the 
pressure head, and hb is the air entry suction at 
which air will enter the porous media. Insert: the 
SWC curve measured in the drying of a given soil 
differs from that determined by wetting of the same 
soil, as a result of residual entrapment during drying 
and residual air entrapment during wetting. The 
resulting hysteresis is not an artifact but is a real 
behavior of soil hydraulics in situ. 
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tends to cause higher water contents during the drying cycle compared to the wetting cycle. 

Similar hysteresis effects as 6(7) come about in 8(7) as well. This effect is less noticeable for 

8(6), however it is not negligible for all soil textures (Nielson et al., 1986; Hillel, 1998).  

Brooks and Corey (1966) proposed a relation between soil water content and matric potential: 

� = �9 + Δ� ,;<
+=0

>?	          (2-5)  

where � is volumetric water content, Δ� = �� − �9  is soil moisture capacity, ��  is volumetric 

water content at saturation (maximum moisture), �9  is residual volumetric water content 

(irreducible moisture), �@  is matric potential, ℎA  is bubbling pressure of the soil (height of 

capillary fingering), and B is empirically derived parameter of Brooks-Corey method known as 

the “pore size index”. A smoothed version of the Brooks and Corey SWC model is proposed by 

van Genuchten (1980): 

� = �9 + C�
'(D4EF;<F5G)H          (2-6) 

where I	and J	are dimensionless parameters and K has the dimensions of reciprocal head and 

given J	and ℎA, I and K may be calculated as follows. 

I = (
(>L             (2-7) 

K = (
+= ,2

N
H − 1	0(>L           (2-8) 

 Details of deriving the J  parameter are given in Fetter (1999). For large capillary 

pressures van Genuchten and Brooks-Corey formula become identical (Charbeneau, 2006). In 

this case we can relate the parameters of two models through B = I − 1. 
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Table 2-1 shows the average empirical values for the van Genuchten parameters and the residual 

and saturated water content for various soil textural classes. 

Table 2-1. Average values of soil water characteristic curve parameter obtained by 

experimental means (Leij et al., 1996). 

Soil Texture 

Porosity: 

6P [QRQR] 
Residual Water 

Content: 6S [QRQR] 
T 

[ UVW] 
X  

(dimensionless) 

Sand 0.37 0.058 0.035 3.19 
Loamy Sand 0.39 0.074 0.035 2.39 

Sandy Loam 0.37 0.067 0.021 1.61 

loam 0.46 0.083 0.025 1.31 

Silt 0.48 0.123 0.006 1.53 

Silt Loam 0.43 0.061 0.012 1.39 

Sandy Clay Loam 0.40 0.086 0.033 1.49 

Clay Loam 0.47 0.129 0.030 1.37 

Silty Clay Loam 0.55 0.098 0.027 1.41 

Silty Clay 0.47 0.163 0.023 1.39 

Clay 0.51 0.102 0.021 1.20 

 

2.1.2.2. Hydraulic conductivity curve models 

 Equation (2-4) also requires the *(�)  dependence to be defined from data relating 

hydraulic conductivity to water content �. Here we briefly outline measurement of *(�); further 

studies can be reviewed in Dane and Topp (2002), and the standard method is described in 

ASTM D7664-01 (2010). Unsaturated hydraulic conductivity can be measured e.g., in situ via 

Guelph Permeameter or GPM (Reynolds and Elrick, 1987) or in laboratory via Temp Cell or 

Volumetric Pressure Plate Extractor (Fredlund et al., 2012). It is often convenient to estimate 

unsaturated hydraulic conductivity from soil SWC parameters (Charbeneau, 2006). Hydraulic 

conductivity in unsaturated soils *(�) is a nonlinear function of hydraulic conductivity of the 
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soil at saturation Ks and degree of saturation �� ≡ (� − �9)/(�� − �9). Brooks and Corey (1966) 

proposed a power-law model for unsaturated hydraulic conductivity as: 

*(�) = *���ZD[/?          (2-9) 

where B the pore size index of the soil. Another popular model for unsaturated soil hydraulic 

conductivity was derived by van Genuchten (1980) based on the work of Mualem (1976): 

*(�) = *��� \1 − ]1 − ��
N
H^

L
_
[
        (2-10) 

where J	is the van Genuchten soil parameter as in equation (2-6), �� is defined above, and $, the 

pore-connectivity coefficient, is originally 
(
[, Schaap and Leij (2000) suggested variable values of 

$ in a study of different soil types.  

2.1.2.3. Temperature and salinity effects on hydraulic properties of vadose 

zone 

 Compared to hysteresis, effects of temperature and salinity on hydraulic properties of 

soils are secondary (Hillel, 1998). At a given pressure head, in particular in fine-texture soils, 

more water will be retained as temperature decreases. Hydraulic properties of unsaturated fine-

texture soil can be altered by salinity; however, studies on this are few (Hillel, 1998, page 278; 

Mitchell and Soga, 2005, page 276). The size of the electrostatic double layer grows with 

decreasing ionic strength of the soil-water solution and can cause swelling in clay particles and 
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reduce hydraulic conductivity (Fetter, 1999). Shainberg et al. (1981) showed that as the sodium 

absorption ratio (SAR)2 increases the relative hydraulic conductivity decreases.  

2.1.3. Preferential flow 

 Richards’ equation (2-4) pertains to flow in porous media that behaves as a continuum; 

however, in the presence of fractures, macropores, or sloping layers of different soil textures, 

water may move preferentially in horizontal or vertical directions. This “preferential flow” 

allows much faster transport of pollutants through the vadose zone to potentially impact 

groundwater quality. (Charbeneau, 2006; Šimůnek and van Genuchten, 2007). There are three 

causes of preferential flow: firstly, decayed root channels, wormholes, burrows, soil surface 

shrinkage cracks serve as macropores that form preferential paths for water and solute transport 

(Germann and Beven, 1985). Secondly, flow instability caused by pore-scale permeability 

variation in the wetting front can lead water in coarse soils to form a number of pathways called 

fingers (e.g., Šimůnek et al., 2003). Thirdly, preferential flow occurs when a sloping layer of 

coarse grain soil or sediment causes pore water to flow laterally towards a lower region in the 

vadose zone, this phenomenon is known as funneling (e.g., Walter et al., 2000). 

 In addition to these factors affection flow directly, solute and/or colloid suspensions may 

reflect transport through unsaturated and saturated porous media that appears faster than that 

accorded to the mean porewater velocity. This may occur for instance with anionic and generally 

non-reactive solutes such as chloride or bromide in porous media characterized by a 

predominately negative surface charge (quartzitic sands). The like charges result in repulsion of 

the solutes from the pore walls and consequently greater residence times in the middle of pore 

                                                           
2 The sodium adsorption ratio is a measure of the ratio of the concentration of monovalent sodium to divalent 
calcium and magnesium 
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space flow channels, so that the resulting average velocity of the charged solutes is greater than 

the average velocity of the water itself. This phenomenon is termed “ion-exclusion” (e.g. 

Gvirtzman and Gorelick, 1991). In the case of colloidal suspensions, even when characterized by 

neutral surface charges, the colloid by virtue of its size is prevented also from residence near 

pore walls where the velocities are relatively slow, and the same result is attained (e.g., Ginn, 

2002). 

2.1.3.1. Closed-form solutions of the Richards’ equation without and with 

preferential flow 

 Since eq. (2-4) is a nonlinear PDE only limited closed-form analytical solutions exist. As 

noted above when matric forces dominate eq. (2-4) may be written without the gravity term, 

yielding a nonlinear diffusion equation (absent of source term): 

��
�� = − �

�� ,*(�) �-.
�� 0          (2-11) 

This model is solvable for particular idealized cases that specify a mathematically manageable 

function for *(�) and are worked out for some evaporation processes (Charbeneau, 2006). When 

the pressure gradient is small (such as high water contents in coarse grain media) the matric term 

may be ignored and Richards’ equation reduces to (again without source term for simplicity): 

��
�� = �

��*(�)           (2-12) 

that is a kinematic wave equation. Note that in this case the Darcy flow (flow per unit area) is 

vertically downward at rate *(�). This form is solvable by the method of characteristics for a 

number of mathematical forms for *(�) as detailed in e.g. Singh (1997).  
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 The full Richards’ equation including both matric and gravity terms can be converted to a 

Burger’s equation when *(�) �-.
��  is assumed to be a constant and *(�) is treated as a quadratic 

function of Se and can be solved using a Hopf-Cole transformation. Details and example cases 

for this approach are given in Warrick and Parkin (1995), Basha (2002) and Rumynin (2011). 

Several conceptual models have been suggested to quantify the complex behavior of vadose zone 

flow with preferential flow. In particular, Germann and Beven (1985) propose a “two-domain” 

approach that applies the capillary flux component of Richards’ equation (2-4) to flow in the soil 

matrix, and the gravity flux component of equation (2-4) to flow in macropores; the two fluxes 

are linked by a mass balance relation. This and other approaches are reviewed in Singh (1997), 

Šimůnek et al. (2003).  

 For general cases of unsaturated flow in natural porous media numerical solution is the 

primary option for quantification of flow by the deterministic Richards’ equation (e.g., Nielson et 

al., 1986), and we present a brief summary of such computer codes below, as they generally 

pertain to modeling both flow and transport processes. First however we turn to the discussion of 

transport processes in the vadose zone. 

2.1.4. Deterministic approach to model solute transport in the vadose zone 

 Once the flow process is represented to the extent that water infiltration and redistribution 

flow rates are quantified in terms of the Darcy flux q, the transport in the vadose zone can be 

characterized using the mean porewater velocity of water, v = q/θ, as parameter that in general is 

a function of space and time both (and θ is the water content). Transport of solute or suspensions 

in the vadose zone is governed by the Advection-Dispersion-Reaction equation (ADR, also 
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called ADE). This expression combines the statement of continuity (mass balance) that the 

change in local mass of a given chemical species, or number density of a colloid suspension, c, 

per bulk volume is proportional to the divergence of the transport of that quantity by diffusion, 

dispersion, or advection through that volume. The result in one-dimension is 

�(��)
�� + �(��)

�� −	 ��� ,�` ��
��0 = a        (2-13) 

where the first term is the change in bulk-volumetric mass density, the second is divergence of 

advective flow in the z direction, the third is divergence of the combined diffusive/dispersive 

flow, and the last term is source or sink due to reactions. In the commonly-encountered case 

where water flow is governed by equation 2 without sources S, then eq. (2-13) reduces by the 

chain rule to: 

��
�� + b ��

�� −	 (� �
�� ,�` ��

��0 = c
�         (2-14) 

where D is the effective hydrodynamic dispersion coefficient that is the coefficient of molecular 

diffusion, scaled by tortuosity d so that it represents diffusion in the porous medium, plus the 

coefficient of kinematic dispersion, that is typically assumed to be linear in velocity (Biggar and 

Nielsen, 1967): 

` = `ed + Kb           (2-15) 

where K is the dispersivity coefficient [$]. The tortuosity factor accounts for the decrease in 

diffusion domain associated with the presence of phase interfaces and is commonly quantified 

using the model of Millington and Quirk (1961) as d = �f/Z/��[. 
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 The final term in eq. (2-14) represents reactions that serve as a source or sink of aqueous 

volumetric mass density, and potentially include the complete suite of biogeochemical reactions 

affecting solutes or colloids in natural porous media. The complexity inherent in quantifying 

such reactions, in addition to the fact that the velocity appearing in both equations (2-14) and (2-

15) is generally a function of both space and time determined only by numerical solution of 

Richards’ eq. (2-4), render eq. (2-14) generally unsolvable except by numerical methods. 

Fortunately a number of such tools exist, but before turning to these we briefly review the 

closed-form solutions that are available, and the cases to which they pertain. 

2.1.4.1. Closed form solutions for transport in the vadose zone: non-reactive 

species 

 Analytical solutions for simple cases are tabulated in Zamani and Bombardelli (2014) 

including solutions for cases of nonhomogeneous media (Zoppou and Knight, 1997), 

multidimensional flow (Logan, 2001), multi-domain (Lassey, 1988; 1989), and multicomponent 

transport (Cho, 1971). These solutions are useful both for verification of numerical solutions, and 

as characteristic solutions for simple boundary/initial conditions that can be used to construct 

solutions to more complicated boundary/initial value problems. In particular, the solutions to 

cases involving idealized (constant or instantaneous pulse) boundary/initial conditions serve as 

“Green’s functions” that can be used with the principle of superposition to determine transport 

solutions when boundary concentrations vary with time (e.g., Toride et al., 1993; Logan, 2001; 

Cannon, 2008). Because the integrations that result must be solved numerically, these solutions 

are called “semi-analytical solutions”. 
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 Most of the analytical solutions of ADR are derived based on a change of variable which 

removes the advective term of ADR equation and then the remaining diffusion equation is solved 

via common methods of solving diffusion equation including Kirchoff or Boltzmann 

transformations (Cannon, 2008; Zamani and Bombardelli, 2014). An outline of the basic solution 

method is given as follows, for the cases of initial value problems where the initial concentration 

is given as g(�, 0) , and then in the case of boundary-value problems where the boundary 

concentration in the influent solution is given as g(0, j) . Consider an advection-dispersion 

equation of the form of (2-14) in which the dispersivity, water content, and velocity are varying 

with time but constant in space, and where there are no reactions or source/sink terms: 

��
�� + b(j) ���� − 	`(j) �

�� ,����0 = 0        (2-16) 

Let k = l b(d)�
m nd, o = � − 	k, and g(�, j) = g(o + k, j) = p(o, j); under these transformations, 

eq. (16) becomes: 

�q(r,�)
�� = `(j) �sq(r,�)�rs ;                        −∞ < o < ∞,  0 < j                                                  (2-17) 

Now, by introducing the Kirchoff transformation		# = l `(d)nd�
m  the above equation reduces to 

the dimensionless form of the heat equation (e.g., Cannon, 2008): 

�q(r,&)
�& = �sq(r,&)

�rs                                                                                                                      (2-18) 

 It can be shown that the analytical solution of equation (2-18) is of the form (Cannon, 

2008): 

p(o, #) = l w(o − k, #)x(k)nky
>y                        (2-19) 

where x(o) is the initial concentration and w(o, j) is the Green's function associated with the 

heat operator on the infinite domain, given by the classical Gaussian distribution (Logan, 2001): 
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w(o, j) = (
z{|}~� �>	

�s
��~�                                                                                                         (2-20) 

 In the boundary value case, we consider the conservative form of the ADR equation in 1D as 

in equation (2-14) but now with constant dispersion coefficient and constant velocity, without the 

sink term, in the domain 0 < o < ∞, 0 < j , subjected to the following boundary conditions: 

constant concentration upstream, g(0, j) = 	 gm ; concentration value asymptotic to zero 

downstream, g(o → ∞, j) = 	0 ; and initial condition, g(o, 0) = 	0 . Applying the Laplace 

transformation to equation (2-16) and its boundary conditions in the time domain, it is possible to 

obtain the following results in the Laplace domain 4p�, o, �5: 

�p� − g(�, 0) = `p��� − bp��         (2-21a) 

p�(0, �) = �~
�              (2-21b) 

p�(� → ∞, �) = 0           (2-21c) 

The solution to the ordinary differential equation set (2-21) is: 

p�(�, �) = �~
� 	exp ,− �

[} (√b[ + 4�` − b)0         (2-22) 

Taking the inverse Laplace of p�, Ogata and Banks (1961) obtained 

g(�, j) = �~
[ ���xg ,�>��[√}�0 + exp ,��} 0 ��xg ,�D��[√}�0�	       (2-23) 

where ��xg refers to the complementary error function.  

2.1.4.2. Closed Form Solutions for Transport in the Vadose Zone: Reactive Species or Two-

Domain Transport 

 Extensions of the above for the case of irreversible decay reactions where R is given 

algebraically are found in Cannon (2008) and in Zamani and Bombardelli (2014). Here we focus 

on reversible reactions that are more challenging. There are only few reactions models for which 

eq. (2-14) with nonzero R representing reversible reactions remains tractable for closed-form 
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solutions, two of which are noted here. In the case of equilibrium linear sorption of the quantity 

represented by c, so that s = Kd c, with s in units of massic mass (and �A�/� is the aqueous-

volumetric mass) and Kd is the equilibrium coefficient [Volume aqueous per mass solid] then the 

reaction term may be written exclusively for this transfer as 
c
� = − �=

�
��
����e9���e� = − �=��

�
��
��  

and then eq. (2-14) becomes 

��
�� + b ��

�� −	 (� �
�� ,�` ��

��0 = − �=��
�

��
��         (2-24) 

or, with	a� ≡ 1 +	�=��
� , termed the “retardation coefficient,” 

a� ��
�� + b ��

�� −	 (� �
�� ,�` ��

��0 = 0        (2-25) 

 It should be noted from eq. (2-25) that such a single sorption reaction that is both linear 

and equilibrium makes the transport of the solute mimic that of a passive tracer (because there 

are no reactions term on the right-hand side of eq. (2-25)), but one with time rescaled by the 

retardation coefficient. In other words, if one divides through eq. (2-25) by the retardation 

coefficient, one regains eq. (2-14) with zero reactions and with both velocity and dispersion 

coefficient reduced by Rd. Therefore the solutions eq. (2-19) or (2-23) may be utilized (for initial 

or boundary value problems, respectively) given properly retarded velocity and dispersion 

coefficients. It must also be emphasized that this result pertains to only the simplest 

representation of interfacial reactions between solute and sorbate and is not realistic for many 

cases, such as surface complexation or ion exchange reactions that require multicomponent 

chemistry accounting, discussed below. 
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 In the case that the surface reaction includes not only equilibrium linear sorption but also 

another surface reaction that remains linear but is not at equilibrium in general, eq. (2-25) is 

partnered with another equation balancing the mass of the non-equilibrium sorbate, so that the 

new system is 

a� ��
�� + b ��

�� −	 (� �
�� ,�` ��

��0 = − �=
�

��
��       (2-26a) 

��
�� = �(g − �[�          (2-26b) 

where k1 and k2 are the rate coefficients of the linear sorption reaction [1/#] and the right-hand 

side of eq. (2-26b) represents kinetically-controlled first-order mass transfer between solute and 

sorbed mass. Equations (2-26) are solved in Lassey (1988, 1989), with the result for the 

boundary value problem where initial concentration is zero and the concentration at the surface is 

co(t): 

g(�, j) = n(k(o), d(j)) ≡ l {ge(d(j) − d�) l Ω(k(o), �)�(d� − �, �)n�}nd′��
m

�(�)
m   (2-27a) 

where the dimensionless variables used are k(o) = ob/` and d(j) = jb[/(a�`), and 

Ω(k, �) = �
z{| ! exp	(>(�> )

s
{  )         (2-27b) 

�(d� − �, �) = exp(−¡(� − ¡[(d� − �)) [¢(d� − �) + ¡(¡[�£(¡(¡[�(d� − �))]   (2-27c) 

and where £(¤) ≡ ¤>N
s£((2¤(/[) where I1 is the modified 1st order Bessel function of the 1st kind, 

an finally ¡( is k1D/v2, and ¡[ is k2RdD/v2. Despite the fact that the foregoing analysis requires 

constant velocity and dispersion coefficient, this remarkable solution is among the most useful 

and general available. It not only pertains to the conditions stated above, but it also is the 
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solution to the problem where the non-equilibrium mass transfer between the c and s phases is 

due to two-domain mass transfer (Coats and Smith, 1964; Nkedi-Kizza et al., 1984) where the 

surface reaction is replaced by an approximate (1st order) diffusive mass transfer into and out of 

the immobile aqueous domain associated with the microscopic pores of the solid phase of a soil 

matrix. 

 The Lassey (1988) solution set also covers the case of colloid filtration in saturated soils, 

and by approximate extension, bacterial transport (Ginn et al., 2006). In these cases the forward 

rate coefficient k1 is classically approximated by  

�( = Z((>�)
[�¥ K¦          (2-28) 

where n� is the characteristic diameter of the granular porous media grains, K is the frequency 

with which the colloids that contact the surface actually stay there, and ¦ is the frequency with 

which the colloids in the suspension contact the surface. It must be recognized that in the 

presence of unsaturated conditions however, there is also the process of colloid immobilization 

by attachment to the soilwater-air interface, and this is not covered by the foregoing models. 

Further readings on this as well as the more complex topic of colloid-facilitated transport can be 

found in Bekhit and Hassan (2005) and in Massoudieh and Ginn (2007). 

 The analytical solutions presented above are all in fact “semi-analytical” as numerical 

integrations must be performed to obtain the solution to particular boundary or initial conditions. 

During the past decades, many software packages have been developed based on analytical 

solutions of vadose zone transport for analyzing in situ and laboratory experiments. Most of 

these codes are based on simplifying assumptions including: constant water content, constant 

flux, steady state flow field, and/or homogeneous porous media (Šimůnek and van Genuchten, 
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2007). One of the most commonly used among the 1D packages of analytical solution of flow 

and transport in the vadose zone are CXTFIT and CXTFIT2 (Toride et al., 1995) that includes 

degradation and sorption process models. In addition, this code is able to solve both direct and 

inverse problems; the latter is the problem of using observed data on effluent or in-situ solute 

concentrations in order to estimate parameters v, D, and Rd. It should be mentioned that 

parameter estimation using CXTFIT and other tools should be constrained by the mathematical 

physics of the problem at hand. For instance, it is possible to obtain values of Rd less than unity 

in inverse parameter fitting; this represents transport of the solute or suspension (colloids) at 

rates that are actually faster than the mean porewater velocity as reflected in b . Of course 

a� 	must be greater than unity by definition. Observation of such “early breakthrough” is 

indicative of either preferential flow, ion exclusion (e.g., Gvirtzman and Gorelick, 1991), or in 

the case of colloids, size exclusion (e.g., Ginn, 2002). 

 ICE-1 is a code for 1D transport of heat and solute in heaving frozen soils (El-Kadi and 

Cary, 1989). Another popular 1D analytical model is PESTAN by U.S. EPA. PESTRAN is for 

evaluating the one-dimensional vertical transport of organic pollutants through homogeneous soil 

to ground-water. It calculates organic movement based on a linear isotherm, first-order 

degradation, and longitudinal dispersion (Enfield et al., 1982). 

 Several 2D and 3D codes based on analytical solutions have been developed, including: 

3DADE by Leij and Bradford (1994), N3DADE by Leij and Toride, (1997), and MYGRT by 

Ungs et al. (1998). Šimůnek et al. (1999) integrated seven separate codes of analytical solutions 

of solute transport in unsaturated/saturated porous media in a public domain Windows-based 

package STANMOD.  
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2.1.5. Codes for numerical solution of vadose zone flow and transport 

 The general problem of solute transport in the vadose zone requires treatment of arbitrary 

boundary conditions on infiltration and solute concentrations, transient and heterogeneous water 

contents and velocities, multidimensional flow and transport, and multicomponent 

biogeochemical reactions. The only avenue currently available for treating these cases involves 

large codes that treat these processes simultaneously. The governing equations of flow and solute 

transport in vadose zone are solved numerically for almost all practical cases mainly through the 

Finite Element Method (FEM) and Finite Volume/Difference Methods (FVM/FDM). 

Historically, FEM was the more popular numerical solution approach in porous media as shocks 

are slighter and capturing complex geometries is more natural with FEM. However in the 1990’s, 

with advancement of mesh generation methods, FVM/FDM are used more widely since those 

method are mass conservative and more advanced in handling sharp gradients. Many codes have 

been developed for simulation of flow and transport in unsaturated zone. U.S. Geological Survey 

developed a 2D/3D hybrid FEM and FDM freeware SUTRA for saturated/unsaturated zones 

with the ability to simulate density dependent flow (Voss and Provost, 2002). VS2DT is a USGS 

program based on the FDM for flow and solute transport in variably-saturated, single-phase flow 

in porous media. Simulated regions include one-dimensional columns, two-dimensional vertical 

cross sections, and axially-symmetric, three-dimensional cylinders (Healy, 1990). VS2DT has a 

Windows-based graphical user interface (GUI). There are several codes originating from U.S. 

Salinity Laboratory, including HYDRUS (Šimůnek et al. 2006) for flow, and 

UNSATCHEM/UNSATCHEM2D (Šimůnek and Suarez, 1993) for reactive transport. More 

recently, HP1 and HP2 (Jacques and Šimůnek, 2010) which are based on the coupling of 
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HYDRUS-1D and PHREEQC (Parkhurst and Appelo, 1999) have become available for 

combined flow and reactive transport. 

 HYDRUS is a FEM model for 1D, 2D and 3D solute and heat transport simulations in 

variably saturated media. The flow equation incorporates a sink term to account for water uptake 

by plant roots. The boundary conditions for flow, and heat and solute transport can vary with 

time. A finite source also can be modeled. Soil parameters are described by the van Genuchten 

parameters (van Genuchten, 1980). The model also considers hysteresis in the SWC (Figure 2-1). 

Solute transport and transformation incorporates molecular diffusion, hydrodynamic dispersion, 

linear equilibrium reactions between the liquid and gaseous phases, nonlinear nonequilibrium 

partitioning (sorption) between the solid and liquid phases, zero-order production, and first-order 

decay/degradation reaction. UNSATCHEM-2D is two-dimensional FEM software for modeling 

ion equilibrium and kinetic non-equilibrium chemistry in the vadose zone. The model is designed 

for prediction of major ion chemistry and water and solute fluxes for soils under transient 

conditions. Since the solution chemistry in the vadose zone is influenced by variations in water 

content, temperature and CO2 concentrations in the soil gas, all these variables are also simulated 

by the model. The flow equation incorporates a sink term to account for water uptake by plant 

roots. The heat transport equation considers the heat transport by conduction and by convection 

with flowing water (Šimůnek and Suarez, 1993).  

 The HYDRUS suite of codes provides for a range of combined reactions and transport 

and are summarized online (http://en.wikipedia.org/wiki/Hydrus_%28software%29, accessed 12 

February, 2015). While the HYDRUS 2D and 3D models are combined with the capability of 

UNSATCHEM, the one-dimensional version HYDRUS 1D includes both UNSATCHEM and 

the separate code HP1 that is the combination of HYDRUS 1D with the general biogeochemical 
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program PHREEQCII (Parkhurst and Appelo, 1999). PHREEQC allows treatment of general 

aqueous speciation, ion exchange, surface complexation, mineral precipitation/dissolution, 

Henry’s law-based buffering with a gaseous phase, and a general Visual Basic-based coding 

accommodation for kinetics, that allows specification of kinetically-controlled mass transfer into 

and out of multiple immobile domains, precipitation/dissolution kinetics, and biodegradation and 

other microbially-mediated processes.  

 LEACHP (Dust et al., 2000) is a code for transient 1D flow and transport in horizontally-

structured soils. The model uses Richards’ equation with the soil-water characteristic curve and 

the *(�) model as introduced above with several variations available. Simulated solutes undergo 

sorption with linear, nonlinear, and two-site models available. RZWQM (Root Zone Water 

Quality Model) simulates flow and transport of solute nutrients and pesticides associated with 

1D flow through an agricultural root zone. The model includes accounting for macropore/lateral 

flow in addition to Darcy flow per Richards' equation, tile drainage, as well as agricultural 

management practices including agrichemical applications, plant growth, and irrigation events 

(DeCoursey, 1992).  

 TOUGHREACT (Xu et al., 2004) supported by Lawrence Berkeley National Laboratory 

is capable of simulating flow and transport in three-dimensional porous and fractured media with 

both physical and chemical heterogeneity. The code can simulate in principle any number of 

chemical species present in aqueous, gas and solid phases, and provides a variety of equilibrium 

chemical reactions, including aqueous speciation, gas dissolution/exsolution, ion exchange and 

mineral dissolution/precipitation. TOUGHREACT also has several models useable for 

kinetically-controlled precipitation/dissolution, with coupling to changes in porosity and 

permeability and capillary pressure in unsaturated systems. 
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 The USGS also provides a suite of codes that support generally reactive transport for the 

vadose zone. The Unsaturated Zone Flow (UZF1) Package (Niswonger et al., 2006) for 

MODFLOW simulates flow through the unsaturated zone using a kinematic wave approximation 

for unsaturated flow. UZF1 is coupled to larger number of popular packages such as 

MODFLOW, MT3DMS, RT3D, and PHT3D and users can more extend existing regional-scale 

flow and transport models to include the unsaturated zone. STOMP (Subsurface Transport Over 

Multiple Phases) by Pacific Northwest National Laboratory (White and Oostrom, 2006). Another 

public domain code is TRACR3D which is a 3D FDM package by Los Alamos National 

Laboratory, that solves the equations of transient two-phase flow and multicomponent ADR in 

deformable, heterogeneous reactive unsaturated saturated porous media (Travis, 1984). 

FEFLOW by DHI (Trefry and Muffels, 2007) is a FEM commercial code for vadose zone and 

saturated porous media. Table 2-2 shows a summary of capabilities if some vadose zone flow 

and transport models.  

 While HP1 and TOUGHREACT are currently among the most general codes for solute 

transport in the vadose zone, the field of commercial software for environmental applications is 

growing rapidly, and other initiatives linking general Richards’ equations solvers with 

PHREEQC and other general reactive transport capabilities is growing (e.g., Wissmeier and 

Barry, 2011; Nardi et al., 2012). 
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Table 2-2. Summary of the vadose zone models by USGS, EPA and USDA 

Process Model 

 HYDRUS2D LEACHP RZWQM VS2DT 

Water Flow 

Mobile/immobile phases ✔    

Macropore flow   ✔  

Root water uptake ✔  ✔ ✔ 

Surface directed flow ✔ ✔ ✔  

Heat Transport ✔  ✔  

Solute Transport 

Maximum number of parent 
and degradate compounds 
simulated 

5 5 3 1 

Sorption ✔ ✔ ✔ ✔ 

Volatilization ✔ ✔ ✔  

Numerical Dispersion ✔    

User-defined dispersion ✔ ✔ ✔ ✔ 

Degradation ✔ ✔ ✔ ✔ 

Nitrification-denitrification  ✔ ✔  

Moist and temperature effect 
of degradation 

✔ ✔ ✔  

Uptake by Plants ✔ ✔ ✔ ✔ 
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2.2. Review of Wetland Sediment Transport Modeling
3
 

 Historically sediment transport science has been developed for riverine morphology, 

however progressively it has extended to harbors, estuaries, coastal areas, lakes and recently 

wetlands. Although the crux of sediment transport knowledge was experimental, since the mid-

1970s mathematical modeling has opened a new frontier in stream processes and sediment 

dynamics. Models of sediment transport have gone through a fundamental renaissance in the last 

decades due to heightened interest in global environmental concerns related to water quality and 

spread of synthetic chemicals that attach to fine sediments. Instead of studying total load and bed 

morphology, the objective of sedimentation modeling has been re-directed toward ecohydraulics. 

In this paper we review the sediment transport models that are applicable to or have been applied 

to wetlands.  

 Sedimentation in wetlands4 is not only important for morphological landscape concerns 

but also for pelagic habitats, sediment oxygen demand, turbidity, and biochemical reactions. 

Contaminations and nutrients are attached to sediment particles therefore the transport of 

sediment also describes the dynamics of corresponding contamination in wetlands (Luengen and 

Flegal, 2009). High sediment load may cause extreme biological growth and change in hyporheic 

flow due to clogs in the bed of wetlands (Kadlec and Wallace, 2009). A major functionality of 

constructed wetlands is the removal of suspended particles.  

2.2.1. Wetland sediment processes 

Fundamentals of sediment mechanics in wetlands are very similar to estuaries. Forcing 

factors of sediment transport are turbulent flows, tidal mixing, wind induced stress, wave action, 

                                                           
3 This subsection was written by Kaveh Zamani solely, and it is part of a review paper by ASCE-EWRI Wetland 
Hydrology Technical Committee which is accepted for publication in ASCE-Journal of Hydrologic Engineering. 
4 In this chapter “wetland” refers to free water surface (FWS) wetlands. 



28 

 

animal or boat activities and coastal currents (Malmaeus and Hakanson, 2003; Schoellhamer et 

al., 2012). However, additional issues are included in wetlands sediment processes: wetlands are 

strongly influenced by biochemical processes, biological gas may cause uplift and resuspension 

(Kadlec and Wallace, 2009) biomass and flocculent sediment that exists in some wetlands have 

low bulk density and their behaviors are not described by classic non-cohesive sediment 

transport mechanics (Kadlec and Wallace, 2009). Wetland sediment transport characteristics are 

essentially associated with low water velocities and flora and fauna effects (Kadlec and Wallace, 

2009). Low water velocity and plant effects make wetlands a depositional environment rather 

than erosional which is more common in streams and coastal areas (Mitsch and Gosselink, 

2000). Vegetation plays a key role in wetland dynamics in four ways: first, plants in the wetlands 

affect driving forces induced by flow and turbulence on the sediment particles (Follett and Nepf, 

2012), second, root binding hinders bed erosion and resuspension of sediment (Horppila and 

Nurminen, 2003; Horvath 2004, Follett and Nepf, 2012), third, vegetation of wetlands produce 

sediment through processes of death, litter fall, seed and litter attrition (Kadlec and Wallace, 

2009; Lago et al., 2010), finally, vegetation may even enhance erosion rate in some regions 

(Follett and Nepf, 2012). In general, as fluid induced forces on the sediment particles exceed the 

critical threshold inter-particle bonding, there are two common modes of transport: suspended 

load and bedload. Turbulent flow lifts up fine particles into the water column as suspended load 

while coarser particles roll, slide or saltate near the bed as bedload. A major distinctive feature of 

sediment transport mechanics in wetlands is that, bedload transport is negligible in most cases 

(Schoellhamer et al., 2012).  
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2.2.2. Mathematical representation of sediment transport in wetlands 

 There are several continuum and stochastic conceptual models to represent processes in 

fluid-particle mixture. For sediment transport modeling an Eulerian-Eulerian framework is 

usually taken rather than an Eulerian-Lagrangian framework for representing fluid and solid 

particles respectively. Eulerian-Lagrangian sediment transport models are typically used in 

theoretical research vis-à-vis practical studies (Spasojevic and Holly, 2008; Jha and Bombardelli, 

2010). This review does not cover Eulerian-Lagrangian particle transport models, however these 

models could give a cutting-edge insight into the sediment mechanics of vegetated water-bodies. 

In Eulerian-Eulerian sediment transport models, there are two general categories that account for 

sediment transport. One is the tracking of total load movement (Greimann et al., 2008) another is 

the tracking of the bedload movement and suspended load movement separately after the 

breakdown of the total load based on the Rouse number (for example: MOBED2 by Spasojevic 

and Holly, 1990). To the best of our knowledge total load models have not been utilized to 

simulate sediment transport in wetlands to date. The majority of wetland sediment transport 

simulations have used suspended load and bedload models (Lee and Shih, 2004; Lago et al., 

2010; Chu and Rediske, 2012; Meselhe et al., 2012). Below we discuss the details of bedload and 

suspended load sediment transport in wetlands.  

 Bedload transport is mainly related to bed shear stress and less influenced by vegetation 

induced drag forces (Okabe 1997; Hirano et al, 1999; Wu, 2005; Follett and Nepf, 2012). 

Vegetation impact on bedload transport was investigated in several studies: Okabe et al. (1997) 

validated a formula for non-vegetated channels. Wu et al. (2000) derived a formula accounting 

for the hiding mechanism in bedload transport. Wu et al. (2005) used Wu et al., (2000) formula 

in a numerical simulation of a vegetated river. Jordanova and James (2003) experimentally 
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investigated the bedload transport in a flume covered with uniformly distributed vegetation and 

suggested an empirical formula based on the effective bed shear stress. Kothyari et al. (2009) 

investigated the effect of rigid stems on the bedload transport. Bedload transport is computed via 

empirical equations which calculate dimensionless Einstein bedload number “%∗” as a function 

of excess shear stress “d∗ − d�∗” (García, 2008, section 2.6 and the references therein). In general 

bedload transport is assumed to be negligible in most wetland sediment transport simulations 

(Lee and Shih, 2004; Lago et al., 2010; Chu and Rediske, 2012). The reasons for it are: blocking 

effect of plants and low upward shear velocity compared to settling velocity of particles in the 

wetland environment. This assumption is thoroughly valid in particular for constructed and 

lacustrine wetlands, and swamps. Ganju et al. (2005) mentioned that bedload contribution in the 

total sediment load is negligible in coastal wetlands. Several measurements by Dinehart (2002) 

and Wright and Schoellhamer (2005) showed the daily bedload to be in the range of 0.5 to 2.4% 

of the total load in an estuary near Sacramento, California. Measurements by Holloway (2010) 

showed that only less than 5% of the total retained sediment is bedload in a riverine wetland in 

Elkhorn Slough, California.  

 The governing equation of suspended sediment transport is based on the conservation of 

mass for an incompressible dilute mixture (so called ADR). Its most generic form is: 

�qª
�� + «� �qª�r¬ − (* + ­)�® �sqª

�r¬�r¯ = °± −`± ± �±; ³, ´ = 1, 2, 3; 	� = 1,… ,·   (2-29) 

where p	[$Z $Z⁄ 	¹�	º/$Z ) is spatially-averaged concentration, j  and o  are time and space 

coordinates, � refers to the sediment class for grain sorting, «	[$ #⁄ ] is velocity of flow which is 

usually assumed to be identical for solid and liquid phases, ³ and ´ are the index of coordinates, 

*	[$[ #⁄ ]  refers to molecular diffusion, ­	[$[ #⁄ ]  is hydrodynamic dispersivity (however, the 

flow regime in wetlands is typically laminar), °	  and `	[1 #⁄ 	¹�º #⁄ ]  are entrainment 
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(resuspension) and deposition respectively, and �	accounts for any other sediment sink or source 

in the water-body. There exist many formulas in literature for entrainment and deposition of 

particles in suspension (García, 2008; Section 2.9 and references therein). Basically deposition is 

a function of settling velocity and local concentration and entrainment is a function of explicit 

particle Reynolds number, kinematic viscosity of water and turbulent shear velocity (García, 

2008). Finally other forms of sink or source in wetlands are all categorized under the term	�, 

namely the production of organic sediments or the reduction of suspended sediment load due to 

submerged vegetation trapping (Schoellhamer et al., 2012). 

 The ADR equation which governs suspend sediment distribution is mainly discretized 

with Finite Difference Method (HEC-6, by Thomas and Prashum, 1977), Finite Volume Method 

(Mike by DHI, 2011), or Finite Element Method (RMA10 by King, 1988). Sediment transport 

equations are mainly discretized in a Cartesian (Mike by DHI, 2011) or curvilinear coordinate 

system (MOBBED2 by Spasojevic and Holly, 1990) with either a uniform (HEC-6) or non-

uniform mesh (Flow-3D, by Flow Science, 2011), and with either a structured (Mike 21) or 

unstructured grid (Delft3D by Deltares, 2011). Sediment and hydrodynamic modules are 

working either decoupled or semi-coupled or coupled (Kassem and Chaudhry, 1998). Choosing 

the appropriate coupling approach is a crucial issue for wetland sediment transport modeling as 

the time scales of transport and flow phenomena possess different orders of magnitudes. 

Sediment transport models are also categorized based on how the flow solver discretizes the 

shallow water wave equation, for example HEC-6 is steady, SUTRENCH-2D is quasi-steady 

(van Rijn and Tan, 1985), and Mike 21 is unsteady. Overall, the numerical schemes to solve 

ADR equation are well-developed and reliable after almost five decades (Zamani and 

Bombardelli, 2013). The Achilles’ heel in sediment transport modeling, in particular for 
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wetlands, is the quantification of the sink and source terms which are entrainment, deposition 

and effects of vegetation. These processes are among the most complex phenomena in nature and 

depend on turbulence, flocculation, irregular geometry, and biochemical activities which are 

inherently stochastic (van Rijn, 1993). Commonly however, deterministic empirical formulas 

have been used to define these phenomena. Currently, the mechanistic understanding of 

entrainment, deposition and cohesive sediment behavior is still immature and heavily relies on 

physical experimentation. In the next section, four approaches to wetland sediment transport 

modeling are briefly discussed with increasing complexity from 0D models, which treat flow and 

sedimentation in wetlands similarly to settling tanks and clarifiers, to sophisticated 3D models, 

which were developed for morphological studies of stratified estuaries.  

2.2.3. Sediment transport models – hierarchy in complexity  

 The simplest modeling approach for sediment transport in wetlands is one that considers only 

continuity of mass and uniform steady state inflow and outflow (Kadlec and Wallace, 2009). 

This approach is similar to sedimentation tank processes in water/wastewater treatment. In the 

mass balance, re-suspension of particles and vegetation generated sediments are considered as 

sources while deposition is considered as a sink. These models may have multi-classes of 

particles unless the inflow sediment is truly of uniform size. In general, the 0D models are only 

applicable for geometrically regular, spatially uniform wetlands with steady, unidirectional flow. 

In other words, they can only provide preliminary analysis on the TSS distribution in free surface 

flow constructed wetlands. 

 In order, the second simple sediment transport model of wetlands is 1D models. These 

models are easy to set up and calibrate, and computationally inexpensive (Spasojevic and Holly, 

2008). Therefore 1D models are the most cost-efficient choice to simulate morphological 
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changes occurring over extended time scales in riverine wetlands or large scale policymaking 

studies (van Rijn, 1993). The main drawback is this: 1D models solve the cross-sectionally 

averaged shallow water and ADR equations. In this representation, variations in the depth and 

transverse direction cannot be resolved. However, modelers have developed methods to estimate 

information on the vertical sediment concentration only based on the 1D sediment transport 

models (Spasojevic and Holly, 2008). Some 1D sediment transport models are even extended to 

simulate tidal riverine networks (for example Pereira et al., 2009). Nevertheless, the 2D 

morphological nature of wetlands is poorly represented with 1D sediment transport models.

 As the local details of flow and mobile-bed dynamics are under resolved for 1D wetland 

sediment transport models, these features are better represented in 2D models. A 2D sediment 

transport model is the standard choice for analyzing the morphological evolutions in a wetland 

(Spasojevic and Holly, 2008). 2D wetland models are depth integrated and mostly developed for 

sediment transport in shallow estuaries. The main assumption in these models is that the water 

column is well mixed at each computational cell (no stratification) (DHI, 2011). This assumption 

generally holds for shallow water bodies and wetlands that are less than 4 meters in depth 

(Chimneya et al., 2006; Chapra, 2008). The 2D sediment transport models solve the 

nonlinear/linear shallow water and transport equations. Some of those solvers have advanced 

schemes that incorporate boundary fitted grids (FAST2D by Minh Duc et al., 1998) or wet-dry 

nodes (Mike 21 by DHI, 2011). Examples of application of 2D sediment transport models in 

wetland morphological studies are works by Sánchez, 2008; Larsen and Harvey, 2010; and Lago 

et al., 2010. 

 3D models provide the most comprehensive quantitative simulation of flow and sediment 

transport in wetlands. Modelers have to resort to 3D models when density currents are important 
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in sediment transport or when flow in the vicinity of inlet/outlet structures or obstacles are being 

investigated (van Rijn, 1993; Spasojevic and Holly, 2008). Even if we choose to resort to 3D 

modeling it is sufficient to use the vertically hydrostatic pressure in lieu of vertical momentum 

equation in wetland sediment process (Spasojevic and Holly, 2008). The calibration and 

computational cost in 3D simulations are resource intensive. One aspect of these models is the 

choice of turbulent closure due to the fact that turbulence statistics are crucial in the 

quantification of sediment entrainment and parameters of cohesive sediment in wetlands. 

However, because wetlands are mainly considered as depositional environment (Mitsch and 

Gosselink, 2000), thus wetland sediment transport modeling does not highly rely on 

sophisticated turbulence models unless the effect of local obstacles or strong jet is being studied 

(Spasojevic and Holly, 2008). Most 3D sediment transport models are unsteady and fully 

coupled. Therefore, 3D modeling is more commonly used for local scale morphological studies 

around obstacles/vegetation in wetlands where the boundary conditions are fed by 2D or 1D 

models (hybrid grid modeling) (Sinha et al., 1998; Lai, 2010). 3D modeling of sediment 

transport in wetlands is relatively new (Meselhe et al., 2012) and the lengthy and large scale 

morphological simulations are not currently feasible due to limitations in computational power.  

 Apart from whether a 1D, 2D or 3D modeling approach is chosen, there are some 

challenges involved in the modeling of sediment transport in wetlands. If integrated surface 

water - groundwater exchange is considered then an appropriate time scale must be chosen for 

each solver to exchange information and sub-stepping option needs to be considered. Given that 

the behavior of organic and cohesive sediments in wetlands are controlled by factors such as 

salinity, temperature, seasonal variations, and bio-geochemistry (Kadlec and Wallace, 2009) the 

associated model has to be capable of simulating water quality constituents (exchange of 
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chemical fluxes between water column and substrate deposits in parallel to sediment transport). 

The particles entering or leaving a wetland are not of a single size (Kadlec and Wallace, 2009), 

therefore a comprehensive wetland sediment transport model should support multiple particle 

size classes. Wetland sediment transport modeling does not generally require unsteady 

hydrodynamic modeling due to the scales of the processes. Usually a series of steady-state 

inflows and water surface elevations are sufficient unless the effects of an extreme flood event 

are being studied. The process based understanding of the impact of wetland vegetation as sink 

or source of sediment, root binding, trapping effect, etc. is in its infancy stage and further 

fundamental knowledge of those mechanisms is the key gap that needs to be filled to provide 

accurate sedimentation predictions (Papanicolaou et al., 2008; Schoellhamer et al., 2012). The 

other issue is incorporating the effect of vegetation heterogeneity on flow and sedimentation 

(Follett and Nept, 2012). Most of the current wetland models consider equivalent homogenous 

distribution of vegetation (Feng and Molz, 1997; Lago et al., 2012). 

2.2.4. Final remarks on sediment transport modeling in wetlands 

 Sediment transport is one the most difficult processes to simulate in nature (Papanicolaou 

et al., 2008). To date, many sediment-associated processes are not mechanistically well-

understood. Therefore, modelers have resort to empirical/simplifying formula to define them 

(van Rijn, 1993). This issue manifests itself in wetland sedimentation modeling more than other 

water-bodies. The reason is most of the suspended solids therein are actively participating in 

geochemical and biochemical cycle of wetland. The wetland sediment particles are not typically 

same as other water-bodies. While rivers and costal zones sediment particles are mostly sand and 

gravel, wetland specified sediments are iron flocs, aluminum flocs, calcium carbonate as well as 

biomass. Therefore, a crucial key to further advancement in wetland sediment transport models 
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is improvement of representative models to describe the behavior wetland specified particles. 

Besides that issue, even with an idealistic conceptual representative model of suspended 

sediment concentration, bed sediment properties and morphological changes in wetlands, other 

steps are still required for an “effective” sediment transport modeling in wetlands, specifically, 

model verification, model calibration and model validation can keep the mismatch between the 

simulated results and actual values within the reasonable range: First step is verification to check 

whether the sediment transport model follows the intended design algorithm (Zamani and 

Bombardelli, 2013), second, calibration to tune the parameters within physically meaningful 

ranges such that they accurately represent actual phenomena, and finally, validation to 

quantitatively assess the accuracy of the sediment transport model (Papanicolaou et al., 2008). 

Model verification is a purely mathematical activity while sufficient field measurements of 

suspended sediment flux, bed sediment composition and bed elevation are required to conduct 

model calibration and validation which is crucial for any robust sediment transport modeling 

(Schoellhamer et al., 2012). Finally, “post-auditing” a former wetland sediment transport model 

would be beneficial for quantitative model skill assessment after implementing. 

 In the end, similar to all modeling practices in water resources, in the modeling of 

wetland sediment transport there is a tradeoff between computational economy and model 

complexity. Eventually the modeler should realistically adjust the model’s level of complexity 

based on the project objectives, resources, budget, time constraints and available measured data 

for model calibration and validation. Vito Vanoni said: “In conclusion, the choice of a model at 

this time is arbitrary, and the choice of a modeler is probably more important than the choice of a 

model.” (Dawdy and Vanoni, 1986).  
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Chapter 3: Analytical Solutions of Nonlinear and Variable-

Parameter Transport Equations for Verification of Numerical 

Solvers
1
 

3.1. Introduction 

The transport or Advection-diffusion-reaction (ADR) equation represents a host of natural 

and man-made phenomena in environmental fluid mechanics, biology, chemistry and applied 

physics, among other fields. The equation can express the conservation of mass, momentum or 

energy. The transport of state variable (𝑥, 𝑡)  can be represented by the following generic 

equation:  

𝜕

𝜕𝑡
+ ∇. (𝑢(, 𝑥, 𝑡)) = ∇. (𝐷(, 𝑥, 𝑡). ∇) + 𝑅(, 𝑥, 𝑡)                                                             (3-1) 

where 𝑡 and 𝑥 are time and space coordinates, 𝑢 refers to the flow velocity, 𝐷 is the diffusivity 

tensor, and R is the source term which accounts for any form of loss or generation of the property 

 [Hundsdorfer and Verwer, 2003]. In most cases of heat and contaminant transport in natural 

streams and groundwater flow, velocity and diffusivity do not depend upon the state variable ; 

therefore, equation (3-1) is a linear partial differential equation (PDE). However, this is not 

always the case. For example, velocity and dispersivity of density driven flows in lakes and 

estuaries and saltwater intrusion in coastal aquifers can depend on concentration [Fischer et al., 

1979; Fleenor and Bombardelli, 2013]. Diffusivity of hyper-concentrated sediment-laden flows 

depends on the concentration [Wan and Wang, 1994]. In turn, the entrainment and deposition of 

                                                           
1
 This chapter was published as: Zamani, K., Bombardelli, F. A. (2014). Analytical solutions of nonlinear and 

variable-parameter transport equations for verification of numerical solvers. Environmental Fluid Mechanics, 14(4), 

711-742. 
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sediment can be nonlinear functions of the sediment concentration in the water column [Jha and 

Bombardelli, 2010, 2011]. In addition to nonlinearities, velocity and diffusivity are often 

functions of space and/or time, reflecting for instance non-uniform and tidal flow, and seasonal 

or large-scale transients of the porous media. 

 Numerical models are widely used in quantification of transport phenomena on architectures 

ranging from PCs to high-performance computing platforms. The growth of numerical 

simulation generates the need for code verification tools. Analytical solutions (employed in the 

Method of Exact Solution, MES [Oberkampf and Roy, 2010]) constitute the natural tool for 

verification of numerical codes [Tracy, 2006; Stern et al., 2006; Wang et al., 2008; Roache, 

2009; Oberkampf and Roy, 2010] and development of the numerical schemes [Valocchi and 

Malmstead, 1992; Siegel at al., 1997; Verwer et al., 2004; Oberkampf and Roy, 2010; Stockie, 

2011]. 

There is a considerable body of work on the analytical solution of the ADR equation. In 

addition to mathematicians [Crank, 1979; Logan, 1996, 2001, 2008; Khalifa, 2003; Remesikova, 

2004; Cannon, 2008; Stakgold and Holst, 2011], geo-hydrologists [Ogata and Banks, 1961; 

Mohsen and Pinder, 1984; Barry and Sposito, 1989; Yates, 1990, 1992; Parlange et al., 1998; 

Chen et al., 2003a, 2003b, 2008a, 2008b, 2011a, 2011b; Singh et al., 2009, 2010], researchers in 

atmospheric science [Tirabassi, 1989; Costa et al., 2006; Stockie, 2011], bioengineers [Khakpour 

and Vafai, 2008] and heat-transfer researchers [Carslaw and Jaeger, 1959; Guerrero et al., 

2009] have all contributed significantly to the analytical solution of the transport equation. To 

the best of our knowledge, Table 3-1 lists the most relevant analytical solutions of the transport 

equation for code verification to date. The table primarily shows the solutions of the single-scalar 

transport equation and a more comprehensive table is outside the scope of this paper. The second 
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column discusses the dimensionality and the coordinate system in which the solution has been 

derived; most of the solutions have been derived either in one dimension (1-D), or in 

simplified/symmetric multi-dimensional space. The next three columns describe the 

characteristics of advective, diffusive and reactive terms, respectively. They show if those three 

terms are involved in the equation and, in the case they are, whether they are constant, linear or 

nonlinear function of the independent/dependent variable(s). The sixth column shows the 

solution technique, ranging from similarity solutions, to perturbation methods, to eigenfunction 

expansions. 

 From inspection of Table 3-1, it becomes apparent that there is no analytical solution for 

equation (3-1) with all nonlinearities involved. Given that many of the well-developed solution 

techniques are just viable for linear PDEs, this shortcoming is understandable [Logan, 2001]. 

Second, in spite of the fact that a number of special cases of nonlinear ADR equations have been 

solved [see Logan, 2001, 2008; Rajabi et al., 2007; Cannon, 2008; Momani and Yildirim, 2010], 

some of those solutions have been produced through power series [Chen et al., 2008a; Guerrero 

et al., 2009] or perturbation theory [Wu and Cheung, 2008; Momani and Yildirim, 2010] which 

have shortcomings on their own for code verification, since they converge slowly, requiring a 

relatively large number of terms for adequate accuracy. This is a clear inconvenience if one is 

interested in testing codes because it is hard to automate the computation of the terms [Roache, 

2009, page 86; Oberkampf and Roy, 2010, pages 208, 240]. Third, many existing solutions of the 

ADR equation with spatially-varying velocity and diffusion/dispersion coefficient are not 

consistent with the conservation of mass of the carrier fluid (see below). Fourth, to the best of 

our knowledge, solutions of the ADR equation containing simultaneous spatial and time 

variability of the velocity and dispersion coefficient do not exist. 
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The problem motivating this work was the verification of a general code for the simulation of 

the transport of constituents in tidal networks of channels, i.e., in 1-D [Ateljevich et al., 2011]. In 

these systems, the velocity and the dispersion coefficients are functions of space and time, and 

might be functions of the sediment concentration for non-dilute mixtures in very unusual cases. 

Further, we were interested in the cross-sectionally integrated version of the flow mass and 

transport equations: 

𝜕𝐴

𝜕𝑡
+
𝜕(𝑈𝐴)

𝜕𝑥
= 0                                                                                                                            (3-2) 

𝜕(𝐴𝐶)

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐴𝐷

𝜕𝐶

𝜕𝑥
) −

𝜕(𝑈𝐴𝐶)

𝜕𝑥
+ R                                                                                               (3-3) 

where 𝐴  denotes the cross-sectional area [𝐿2 ], 𝐶  is the cross-sectional average concentration 

[𝑚𝑎𝑠𝑠/𝐿3 or 𝐿3/𝐿3], 𝑈 denotes the velocity averaged over the wetted area [𝐿/𝑇], and 𝐷 refers to 

the effective dispersion in the x direction [𝐿2/𝑇]. We were interested in the coupled solution of 

the above system. Regarding this particular important issue, Neelz [2006] discussed the 

deficiencies of a given spatially-variable analytical solution of the ADR equation which did not 

satisfy equation (3-2), leading to inconsistencies in the results from the physical standpoint. 

 In this paper, we present “clean” analytical solutions for the verification of 1-D transport 

solvers considering many possible combinations in equation (3-1). The word “clean” refers to a 

solution given in explicit form and expressed in terms of elementary functions. Series-based 

solution or solutions in terms of hypergeometric functions or integral forms are not included in 

our definition of the word “clean.” In the next section (Section 3.2), a brief review of the 

methods of solving the transport equation is given. Then we provide analytical solutions to the 

ADR equation for verification of the following variants: a) nonlinear velocity, dispersivity and 

sink/source (Section 3.3); b) spatiotemporal changes in flow field and dispersivity; these 
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analytical solutions hold mass continuity for the ambient flow field (Section 3.4). In particular, 

the derived analytical solutions are provided in the general form. Therefore, they are applicable 

for any required form of boundary conditions (Dirichlet, Neumann and Robin) and arbitrary 

Péclet and Damköhler numbers. In Section 3.5, we give hypothetical examples that utilize the 

derived solutions. Section 3.6 discusses quantitative metrics of error for model skill assessment 

and code verification. We also proceed with a critical discussion on the alternative methods of 

code verification in the Section 3.7, followed by conclusions. 

3.2. Background Methodologies 

 In this section, concise reviews of the techniques we use to derive the analytical solutions of 

the transport equation are provided. 

3.2.1. Reduction of ADR equation to heat equation 

 Consider the following ADR equation where 𝑢0  and 𝐷0  indicate constant velocity and 

dispersivity respectively: 

𝜕�̂�

𝜕𝑡
=

𝜕

𝜕�̂�
(𝐷0

𝜕�̂�

𝜕�̂�
) −

𝜕(𝑢0�̂�)

𝜕�̂�
− �̂�;          −∞ < �̂� < ∞,  0 < 𝑡                                                       (3-4) 

Since there is comprehensive literature on the analytical solution of the heat equation, oftentimes 

we recast a given ADR equation in the classical form of the former to find an analytical solution 

[Logan, 2001]. To that end, we follow a transformation discussed in Singh et al. (2009) and 

Yadav et al. (2010): 

�̂�(𝑥, 𝑡) = 𝐶(𝑥, 𝑡)𝑒
(
𝑢0𝑥

2𝐷0
 − 

𝑢0
2𝑡

4𝐷0
 −𝑡)

                                                                                                (3-5) 

Under this transformation, the advective and source terms are eliminated from (3-4). Cases of 

variable velocity will be considered in the next subsection. 
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3.2.2. Transformation to simplify time dependent ADR  

 Take an advection-diffusion equation in which the dispersivity and velocity are varying with 

time: 

𝜕�̂�(𝑋,𝑡)

𝜕𝑡
=

𝜕

𝜕𝑋
(𝐷(𝑡)

𝜕�̂�(𝑋,𝑡)

𝜕𝑋
) −

𝜕(𝑢(𝑡)�̂�(𝑋,𝑡))

𝜕𝑋
;         −∞ < 𝑋 < ∞, 0 < 𝑡                                        (3-6) 

Let 𝜉 = ∫ 𝑢(𝜏)
𝑡

0
𝑑𝜏 , 𝑥 = 𝑋 −  𝜉 , and �̂�(𝑋, 𝑡) = �̂�(𝑥 + 𝜉, 𝑡) = 𝐶(𝑥, 𝑡) ; under these 

transformations, equation (3-6) becomes: 

𝜕𝐶(𝑥,𝑡)

𝜕𝑡
= 𝐷(𝑡)

𝜕2𝐶(𝑥,𝑡)

𝜕𝑥2
;                         −∞ < 𝑥 < ∞,  0 < 𝑡                                                     (3-7) 

Now, by introducing 𝑇 = ∫ 𝐷(𝜏)𝑑𝜏
𝑡

0
 the above equation reduces to the dimensionless form of the 

heat equation [Kirchhoff, 1894]: 

𝜕𝐶(𝑥,𝑇)

𝜕𝑇
=

𝜕2𝐶(𝑥,𝑇)

𝜕𝑥2
                                                                                                                         (3-8) 

These transformations were utilized by various researchers [Crank, 1979; Barry and Sposito, 

1989; Basha and El-Habel, 1993; Kumar et al., 2009; Singh et al., 2009]. 

 

3.2.3. Fundamental solution of the inhomogeneous heat equation 

 The following is an initial value problem on an infinite domain, where 𝐹(𝐶, 𝑥, 𝑡)  is a 

linear/nonlinear function of dependent and independent variables (forcing function): 

𝜕𝐶

𝜕𝑡
= 𝐷0

𝜕2𝐶

𝜕𝑥2
+ 𝐹(𝐶, 𝑥, 𝑡);         − < 𝑥 < , 0 < 𝑡 ≤ 𝑇  

𝐶(𝑥, 0) = 𝑓(𝑥)                                                                                                                           (3-9) 

where 𝑓(𝑥) and its first derivative are smooth bounded functions. It can be shown that the 

analytical solution of equation (3-9) is given by an integral, convoluting the Green’s function of 

heat equation and the bounded function and the non-homogenous forcing [Cannon, 2008]: 
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𝐶(𝑥, 𝑡) = ∫ 𝐺(𝑥 − 𝜉, 𝑡)𝑓(𝜉)𝑑𝜉 − ∫ ∫ 𝐺(𝑥 − 𝜉, 𝑡 − 𝜏)𝐹(𝐶(𝜉, 𝜏), 𝜉, 𝜏)𝑑𝜉𝑑𝜏
∞

−∞

𝑡

0

∞

−∞
                  (3-10) 

where 𝐺(𝑥, 𝑡) is the fundamental solution (Green’s function) associated with the heat operator on 

the infinite domain, given by [Logan, 2001]: 

𝐺(𝑥, 𝑡) =
1

√4𝜋𝐷0𝑡
𝑒
− 

𝑥2

4𝐷0𝑡                                                                                                           (3-11) 

In the next section, we will use the above mentioned techniques to degenerate various forms 

of the ADR equation to simpler cases which can be approached by conventional PDE solving 

methods (direct integration, separation of variables, and travelling wave solution). Those 

transformations will be used to either eliminate the advective term, or linearize variable 

diffusivities, or solve the nonhomogeneous heat equation. 

 

3.3. Analytical Solutions to Test Nonlinearity 

 Common cases where nonlinearities manifest themselves in the numerical solution of ADR 

equations are those with stiff source terms, where adaptive time steps are needed to address the 

different time scales [Radhakrishnan, 1983; Massoudieh et al., 2010]; also, nonlinear 

dispersivity may generate instability of the numerical solution [Hundsdorfer and Verwer, 2003]. 

In turn, a nonlinear advective term can develop jump discontinuities at finite times (shock 

formation) [LeVeque, 2002]. Considering those challenges, analytical solutions serving as 

verification benchmarks for nonlinear cases are needed. 

 

3.3.1. Diffusion with nonlinear dispersion coefficient and source term 

 Take the following nonlinear diffusion equation where both the dispersivity and decay terms 

are exponential functions of concentration: 
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𝜕𝐶(𝑥,𝑡)

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐷0𝑒

𝐶(𝑥,𝑡) 𝜕𝐶(𝑥,𝑡)

𝜕𝑥
) − 𝑒𝐶(𝑥,𝑡);  − < 𝑥 < ,  0 < 𝑡,  0 < 𝐷0, 0 <                        (3-12) 

This situation can occur close to streambeds in the cases of very dense sediment concentration 

[Wan and Wang, 1994]. In addition to that, for the sake of rigor, we consider exponential decay 

as an extreme form of nonlinear source.  

In what follows, we present a solution to equation (3-12). Substitution of 𝑐(𝑥, 𝑡) = 𝑒𝐶(𝑥,𝑡) leads to 

the equation with the form of: 

𝜕𝑐

𝜕𝑡
= 𝑐

𝜕

𝜕𝑥
(𝐷0

𝜕𝑐

𝜕𝑥
) − 𝑐2                                                                                                              (3-13) 

With multiplicative separation of variables (𝑐(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡)) we would reduce the above 

PDE to two autonomous ODEs for 𝑋(𝑥) and 𝑇(𝑡), the final solution is: 

𝑐(𝑥, 𝑡) =
𝑒
𝑥√


𝐷0+𝐾1𝑒

−𝑥√

𝐷0+





𝐾2−𝑡
                                                                                                          (3-14) 

where  is a positive separation constant [Stakgold and Holst, 2011] and the Kis are constants to 

be determined based on the boundary conditions and code verification needs. Hence, the final 

analytical solution of the equation (3-12) would be in the form of: 

𝐶(𝑥, 𝑡) = ln(
𝑒
𝑥√


𝐷0+𝐾1𝑒

−𝑥√

𝐷0+





𝐾2−𝜆𝑡
)                                                                                                (3-15) 

Equation (3-15) provides the most generic form of the solution up to arbitrary constants; the 

selection of spatial domain and boundary conditions can be established based on the needs of the 

code verification. It is worth noting that the conservation of mass of the carrier fluid was not 

imposed herein since there is no advection in equation (3-12). This analytical solution cannot 

capture any arbitrary form of initial condition. However this solution is useful for the purpose of 

this study, as shown below. We acknowledge that a similar solution can be obtained with 
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Wolfram Mathematica, but this is the first time this solution has been proposed as part of a 

framework for code verification. 

 

3.3.2. Uniform advection dispersion with nonlinear source term 

 Consider a plume of contaminant which moves with constant flow and diffusivity, while 

subjected to a nonlinear decay. Among the various possible forms for the nonlinear decay, the 

cubic one is chosen herein to assure exercising a severe case of stiff source term. The ADR 

equation is, therefore, in the following form: 

𝜕𝐶

𝜕𝑡
=

𝜕(𝑢0𝐶)

𝜕𝑋
+

𝜕

𝜕𝑋
(𝐷0

𝜕𝐶

𝜕𝑋
) − 𝐶3;     − < 𝑋 < , 0 < 𝑡, 0 < 𝐷0,  0 <                                    (3-16) 

where  is a parameter that represents the decay of constituent 𝐶. The solution strategy is to 

recast (3-16) into the corresponding heat equation and solve it. Consider therefore a moving 

frame of reference and moving boundary conditions as in subsection 3.2.2: 𝑥 = 𝑋 + 𝑢0𝑡 

and 𝐶(𝑋, 𝑡) = 𝐶(𝑥 − 𝑢0𝑡, 𝑡) = 𝑐(𝑥, 𝑡); under those transformations, equation (3-16) becomes: 

𝜕𝑐

𝜕𝑡
= 𝐷0

𝜕2𝑐

𝜕𝑥2
− 𝑐3                                                                                                                    (3-17) 

Taking into account the scales in diffusion process, we build a similarity solution to reduce the 

above PDE to an ODE as: 𝑐(𝑥, 𝑡) =
𝑣(𝜉)

√𝑡
; where 𝜉 =

𝑥

√𝑡
 (called Boltzmann transform [Boltzmann, 

1894]). Substitution of these transformations reduces equation (3-17) to the following ODE: 

𝐷0𝑣𝜉𝜉 +
1

2
𝜉𝑣𝜉 +

1

2
𝑣 − 𝑣3 = 0                                                                                               (3-18) 

The above ODE is a form of Abel ODE, and it is solved based on the tables given in the literature 

[Polyanin and Zaitsev, 2003]:  

𝑐(𝑥, 𝑡) = 𝑡−
1

2𝑣(𝜉) = √
2𝐷0

𝛽

2𝑥

𝑥2+6𝐷0𝑡
                                                                                             (3-19) 
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The exact solution defined in the variables of equation (3-16) is: 

 𝐶(𝑋, 𝑡) = √
2𝐷0



2(𝑋+𝑢0𝑡)

(𝑋+𝑢0𝑡)2+6𝐷0𝑡
                                                                                                   (3-20) 

where any type of boundary condition for numerical verification can be reconstructed from the 

general solution (3-20). Note that this analytical solution can be derived employing the 

fundamental solution mentioned in the subsection 3.2.3 as well. This solution is not a 

“fundamental solution” in terms of Green’s function and is not able to capture any arbitrary 

initial condition. However, it is useful for the purpose of code verification. Finally, equation (3-

13) holds conservation of mass for the ambient flow field. 

 

3.3.3. Burgers’ equation for verification of transport solver 

 The Burgers’ equation is a second order nonlinear PDE that has become a prototype for 

phenomena which involve effects of nonlinearity in concomitance with dissipation. It is worth 

mentioning that the state variable of Burgers’ equation is usually denoted by “𝑢” while we 

named it “𝐶” here [Logan, 2008]: 

𝜕𝐶

𝜕𝑡
= 𝐷0

𝜕2𝐶

𝜕𝑥2
− 𝐶

𝜕𝐶

𝜕𝑥
;      − < 𝑥 <  ,   0 < 𝑡,  0 < 𝐷0                                                           (3-21) 

Since Burgers’ and ADR equations have similar structures, here we take advantage of the 

Burgers’ equation analytical solutions for verification of ADR solvers. To the best of our 

knowledge, papers employing this technique are relatively rare and recent. Hills and Warrick 

[1993] employed an analytical solution of Burgers’ equation to verify numerical solutions of 

Richards’ equation. Later on, a similar trick was employed by Verwer et al. [2004] to test an 

ADR solver. Several closed-form traveling wave and asymptotic solutions have been derived for 

the Burgers’ equation [Logan, 2008]. After the works by Hopf [1950] and Cole [1951], it is well 
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known that Burgers’ equation and its boundary conditions can be converted to the linear heat 

equation by the Hopf-Cole transformation (3-22) and solved via the fundamental solution given 

in subsection 3.2.3 

𝐶(𝑥, 𝑡) = −𝐷
2

𝑐(𝑥,𝑡)

𝜕𝑐(𝑥,𝑡)

𝜕𝑥
                                                                                                         (3-22) 

Consider equation (3-21) with its boundary/initial conditions: 𝐶(𝑥 − , 𝑡) = 𝑐1  upstream; 

𝐶(𝑥, 𝑡) = 𝑐2  downstream; and 𝐶(𝑥, 0) = 𝑐2  as initial condition. Applying the Hopf-Cole 

transformation to equation (3-21) and its boundary conditions, the analytical solution of the 

Burgers’ equation is: 

𝐶(𝑥, 𝑡) = 𝑐1 +
𝑐2−𝑐1

1+𝑒
(𝑐2−𝑐1)(𝑥 − 

(𝑐2+𝑐1)𝑡
2

) 2𝐷0⁄
                                                                                   (3-23) 

In the following section, three analytical solutions to test spatial and temporal changes in 

velocity and diffusivity of transport solvers are given. 

 

3.4. Analytical Solutions for Mass Conservative, Variable-

Parameter Transport Equations 

 In this section, we first recast a former spatially varying coefficients ADR equation such that 

it also satisfies the equation of continuity for ambient flow (3-2). Then, we solve it based on the 

solution given by Ogata and Banks [1961]. Next, we derive the time-dependent ADR equation 

for groundwater and estuarine pollution transport and solve it via transformation to the solution 

by Ogata and Banks [1961]. Finally, we employ a well-known exact solution for tidal forcing in 

a rectangular basin [Wang et al., 2008] for the purpose of exercising the ADR solver with 

spatiotemporal varying flow field. 
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3.4.1. ADR equation with spatially varying coefficients  

 Consider the following equation: 

𝜕𝑐

𝜕𝑡
= 𝐷0 𝜉

2 𝜕
2𝑐

𝜕𝜉2
− 𝑢0𝜉

𝜕𝑐

𝜕𝜉
;           𝜉0 < 𝜉 < ∞, 0 < 𝑡                                                                   (3-24) 

where initial and boundary conditions are 𝑐(𝜉, 0) = 0, where 𝜉0 < 𝜉, 𝑐(𝜉0, 𝑡) = 𝑐0 where 𝜉0 ≥ 𝜉, 

and 𝑐(𝜉 → ∞, 𝑡) = 0. Zoppou and Knight [1997] employed a change of variable (𝜉 = 𝑙𝑛𝑥) to 

homogenize the above spatially varying coefficient ADR equation in the space domain. 

Subsequently, they derived an exact solution based on the Ogata and Banks [1961] solution:  

𝑐(𝜉, 𝑡) =
𝑐0

2
{𝑒𝑟𝑓𝑐 (

𝑙𝑛 (
𝜉

𝜉0
)−𝑢0𝑡

2√𝐷0𝑡
) + 𝑒𝑥𝑝 (

𝑢0𝑙𝑛 (
𝜉

𝜉0
)

𝐷0
)𝑒𝑟𝑓𝑐 (

𝑙𝑛 (
𝜉

𝜉0
)+𝑢0𝑡

2√𝐷0𝑡
)}                                    (3-25) 

 As we discussed before, we are interested in the conservative form of the transport equation 

which also holds continuity for ambient flow. The latter is crucial in verification of two-way 

coupled hydrodynamic-transport solvers and so we employ the method of undetermined 

coefficients. We assume 𝐴 = 𝐾3𝑥
𝛼 , 𝑈 = 𝐾4𝑥

𝛽 and 𝐷 = 𝐾5𝑥
𝛾, insert 𝐴, 𝑈 and 𝐷 in equations (3-

2 and 3-3), and match the coefficients for a non-trivial solution: 

𝜕(𝐾3𝑥
𝛼)

𝜕𝑡
+
𝜕(𝐾3𝑥

𝛼𝐾4𝑥
𝛽)

𝜕𝑥
= 0       𝛼 + 𝛽 = 0                                                                                     

𝜕(𝐾3𝑥
𝛼𝐶)

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐾3𝐾5𝑥

𝛼+ 𝜕𝐶

𝜕𝑥
) −

𝜕(𝐾3𝐾4𝐶𝑥
𝛼+𝛽)

𝜕𝑥
                                                                                 

𝜕𝐶

𝜕𝑡
= 𝐾5𝑥

 𝜕
2𝐶

𝜕𝑥2
− (𝐾4𝑥

−𝛼 − 𝐾5(𝛼 + )𝑥
−1 )                                                                    (3-26) 

Considering the structure of equation (3-2), it is possible to set 𝐴 = 𝐾3𝑥
−1 , 𝑈 = 𝐾4𝑥 , and 

𝐷 = 𝐾5𝑥
2 . Therefore, the solution for the mass conservative ADR equation with spatially-

variable coefficients can be rebuilt analogous to equation (3-25) as shown below, where C is the 

cross-sectionally averaged concentration: 
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𝐶(𝑥, 𝑡) =
𝐶0

2
{𝑒𝑟𝑓𝑐 (

𝑙𝑛(
𝑥

𝑥0
)−(𝐾4−𝐾5)𝑡

2√𝐾5𝑡
) + 𝑒𝑥𝑝 (

(𝐾4−𝐾5)𝑙𝑛 (
𝑥

𝑥0
)

𝐾5
)𝑒𝑟𝑓𝑐 (

𝑙𝑛 (
𝑥

𝑥0
)+(𝐾4−𝐾5)𝑡

2√𝐾5𝑡
)}            (3-27) 

It is worth mentioning that this solution initially has a singularity at 𝑥 = 𝑥0 which needs to be 

considered in the numerical implementation.  

 

3.4.2. ADR equation with time-dependent transport variables 

 For many cases of groundwater and estuarine flows, it can be shown that the transport 

equation has the following form (see Appendix 3-A for derivation of the equation):  

𝜕(𝐴0𝐶)

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐴0𝐷0(𝐾6 + 𝑐𝑜𝑠𝜔𝑡𝑡)

𝜕𝐶

𝜕𝑥
) −

𝜕(𝐴0𝑢0(𝐾6+𝑐𝑜𝑠𝜔𝑡𝑡)𝐶)

𝜕𝑥
 
                                                  (3-28)

 

where the value of 𝐾6 > 1  needs to be assumed herein. This formula demonstrates the 

conservative form of the pollutant transport equation subjected to a flow composed of periodic 

components, in which 𝜔𝑡 refers to the tidal frequency [1/𝑇] (seasonal fluctuation frequency for 

groundwater); all of the other notations are the same as before. Equation (3-28) is cross-

sectionally averaged and it satisfies the conservation of mass for water. Initial and boundary 

conditions are sharp front of mass with constant concentration at the upstream boundary and zero 

concentration at the downstream boundary, i.e.: 𝐶(𝑥, 0) = 0, at 0 < 𝑥; 𝐶(𝑥 = 0,0) = 𝐶0, and 

𝐶(𝑥 → ∞, 𝑡) = 0. The technique to solve this equation was mentioned in subsection 3.2.2; we 

employ the following nonlinear time mapping: 

𝜏 = ∫ (𝐾6 + 𝑐𝑜𝑠(𝜔𝑡𝜏))𝑑𝜏 = 𝐾6𝑡 +
𝑠𝑖𝑛(𝜔𝑡𝑡)

𝜔𝑡

𝑡

0
                                                                            (3-29) 

Dividing equation (3-28) by 𝐴0𝑢0(𝐾6 + 𝑐𝑜𝑠𝜔𝑡𝑡 ) we can rework this equation in the familiar 

form below, for which the analytical solution is known from Ogata and Banks [1961]: 

𝜕𝐶

𝜕𝜏
=

𝜕

𝜕𝑥
(𝐷0

𝜕𝐶

𝜕𝑥
) − 𝑢0

𝜕𝐶

𝜕𝑥
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𝐶(𝑥, 0) = 0,     0 < 𝑥  

𝐶(𝑥, 𝜏) = 𝐶0,  𝑥 = 0  

𝐶(𝑥, 𝜏) = 0,   𝑥 → ∞                                                                                                                (3-30) 

The final analytical solution of the mass conservative ADR equation in this case is:  

𝐶(𝑥, 𝑡) =
𝐶0

2
{𝑒𝑟𝑓𝑐 (

𝑥−𝑢0(𝐾6𝑡+
𝑠𝑖𝑛(𝜔𝑡𝑡)

𝜔𝑡
)

2√𝐷0(𝐾6𝑡+
𝑠𝑖𝑛(𝜔𝑡𝑡)

𝜔𝑡
)
) + 𝑒𝑥𝑝 (

𝑢0𝑥

𝐷0
) 𝑒𝑟𝑓𝑐 (

𝑥+𝑢0(𝐾6𝑡+
𝑠𝑖𝑛(𝜔𝑡𝑡)

𝜔𝑡
)

2√𝐷0(𝐾6𝑡+
𝑠𝑖𝑛(𝜔𝑡𝑡)

𝜔𝑡
)
)}                  (3-31) 

 

3.4.3. Spatiotemporal varying flow field  

 In this section, we present a combined method to verify an advection-reaction numerical 

solver. The analytical solution we utilize for the hydrodynamic portion of the problem is not 

new, and was derived by Defant [1925] for tidal forcing in a dead-end harbor basin [Wang et al., 

2008]. The issue here is not the verification of the hydrodynamic solution, but the way we set up 

a transport problem to verify an advection-reaction process benefiting from this hydrodynamic 

analytical solution. 

 The derivation of the analytical solution of flow field involves several assumptions: a) 

interfacial and bottom friction are negligible; b) no stratification is present; c) the frame of 

reference is non-rotating; d) the second order channel-wise advection terms are neglected; e) 

horizontal velocity is not a function of depth; and f) tidal water surface fluctuations (𝑎) are much 

smaller than channel depth (𝑑). The domain of the problem is shown in Figure 3-1.  

 The analytical solution of the transport equation subjected to this flow field is unknown, but 

it is still advantageous to use this solution as follows. Due to the periodic nature of the tidal flow 

field, we expect any distribution of mass to be located in its initial position after an integer 

number of tidal cycles, i.e., 𝐶0(𝑥, 0) is equal to the mass distribution subjected to advection 
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�̂�(𝑥, 𝑡 + 𝑘𝑇) where T is the tidal period and k is a positive integer. The only remaining problem 

is the definition of the boundary condition. To practically overcome this problem, remote 

boundary conditions are considered. (By the word “remote” we mean the extension of the 

domain length such that the concentration of pollutant at the boundary is kept below the 

computer precision, or practically zero.) The velocity and water surface elevation of the tidally 

induced mass-conservative flow field are: 

𝑢(𝑥, 𝑡) = 𝑚 sin(𝑛 (𝑙 − 𝑥)) sin(𝜔𝑡𝑡) 

𝜁(𝑥, 𝑡) = 𝑎 [
𝑐𝑜𝑠(𝑛(𝑙 − 𝑥))

𝑐𝑜𝑠 (𝑛𝑙)
⁄ ] 𝑐𝑜𝑠 (𝜔𝑡𝑡)                                                                           (3-32) 

where u is the horizontal velocity [𝐿/𝑇], 𝑙 is the harbor basin length [𝐿], x and t refer to space 

and time, 𝜔𝑡  denotes tidal wave frequency [1/𝑇], d is the basin depth [𝐿], 𝜁 is the water surface 

elevation and a is the tidal amplitude [𝐿]. A, the flow wetted area [𝐿2], can be found based on 𝜁, 

𝑑 and 𝑤 (channel width) as 𝐴(𝑥, 𝑡) = (𝑑 + 𝜁(𝑥, 𝑡))𝑤. In turn, m and n are coefficients which are 

defined based on the basin’s geometry, the celerity of the tidal waves, and tidal amplitude and 

frequency: 

𝑛 =
𝜔𝑡

√𝑔𝑑
 ;  𝑚 =

[
 
 
 
 
(𝑎

√𝑔𝑑

𝑑
)

cos(𝑛𝑙)
⁄

]
 
 
 
 

                                                                                          (3-33) 

Here we might assign an arbitrary initial distribution of concentration; the final concentration 

distribution will be the same as the initial shape after one full tidal cycle. Due to practical issues 

we choose a Gaussian profile 𝐶(𝑥, 𝑡0) = 𝐾7𝑒
−
(𝑥−𝐾8 )

𝐾9
2

 and set 𝐾𝑖 to maintain remote BC in the test. 

The other choices might be a square 𝐶(𝑥, 𝑡0) = {1 𝑤ℎ𝑒𝑟𝑒 |𝑥| ≤
𝐾7

2
 𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}  or 
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triangle 𝐶(𝑥, 𝑡0) = {1 −
|𝑥|

𝐾7
 𝑤ℎ𝑒𝑟𝑒 |𝑥| ≤ 𝐾7 𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}. A Gaussian profile provides a 

better performance due to its light tailed frequency spectrum (A detailed discussion of its 

adequacy can be found in McRae et al. (1982)). 

 

3.5. Application of the Derived Solutions in Code Verification 

In this section, several hypothetical test-cases are constructed to illustrate the use of the 

analytical solutions. This work is part of a comprehensive transport solver test suite, where the 

solver is tested against various probable estuarine transport scenarios exhaustively [Ateljevich et 

al., 2011; Zamani and Bombardelli, 2011]. There is a hierarchical increase in the tests’ 

complexity for complete verification of the transport code. We start with a classical test case of 

advection-diffusion-decay with uniform flow and constant diffusivity (Section 3.5.1). Later on, 

three nonlinear cases (Sections 3.5.2 to 3.5.4), and finally test cases of spatial and temporal 

varying parameters (Sections 3.5.5 to 3.5.7), are examined. 

Two practical issues need to be considered before implementation of the derived solutions in 

code verification. First, rigorous numerical verification of a code has to be carried out in the 

special ranges of dimensionless numbers regardless of the physical scales of phenomena the 

solver is intended to simulate [Knupp and Salari, 2003]. To be more precise, the Péclet and 

Damköhler numbers must be close to one to avoid misinterpretation of results in convergence 

study [Knupp and Oberkampf, personal communication, 2012]. The second practical issue prior 

to mesh convergence study is that, cell-averaged results obtained from the FVM (Finite Volume 

Method) cannot be compared to the analytical values, because they have different bases; FVM 

values are volume-averaged quantities whereas analytical solution are point-wise [Leveque, 

2002]. Therefore, the analytical solutions are preprocessed before being used as a code 



66 
 

verification benchmark. By preprocess here we mean either analytically integrated or their value 

computed with a high order numerical integration over the cell. The codes tested in this paper are 

a suite of codes based on the FVM and the Finite Difference Method (FDM); the schemes are 

discussed in Appendix 3-B.  

 

3.5.1. Verification with the constant ADR solution 

 For the sake of completeness of the verification set, we start by simulating a physical process 

in which a pollution plume is advected by a uniform flow while decaying and being diffused 

over the spatial domain.  

𝜕𝑐

𝜕𝑡
= 𝐷0

𝜕2𝑐

𝜕𝑥2
− 𝑢0

𝜕𝑐

𝜕𝑥
− 𝑐                                                                                                         (3-34) 

The fundamental solution (Green’s function) of the above equation is well-known and widely 

used in code verification [Bear 1972; Zoppou and Knight, 1997]:  

𝑐(𝑥, 𝑡) =
1

√4𝜋𝐷0𝑡
 𝑒
−𝑡−

(𝑥−𝑢0𝑡)
2

4𝐷0𝑡  ; 0 < 𝐷0, 0 < 𝑡0 < 𝑡                                                               (3-35) 

The setup for the test is as follows: domain length 𝑥𝜖(0, 25.6 ) 𝑘𝑚, 𝑡𝜖(0, 7.12) ℎ𝑟, dispersivity 

equal to 16 𝑚2/𝑠, velocity = 0.6 𝑚/𝑠 , and linear decay coefficient 𝛽 = 5 × 10−5 1/ℎ𝑟  (The 

value of the dispersion coefficient obtained from scaling arguments and values from the 

literature; see Rutherford [1994] and Deng et al. [2001]) Boundary conditions were obtained 

from the analytical solution. Figure 3-2 shows the numerical solutions pertaining to five different 

times, together with the analytical solution for the last time. Good agreement is obtained between 

the predicted solution and the analytical counterpart. Although this is a suitable benchmark to 

begin with, there are still defects which cannot be uncovered by this test, such as bugs in the 
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temporal and spatial discretization of velocity, dispersivity or area. Quantitative description of 

“good” agreement is provided later in Section 6. 

 

3.5.2. Verification with the nonlinear diffusion-reaction solution  

 Based on equation (3-15), we decided to test the solution for the following case. We picked a 

domain 𝑥𝜖(0, 10) 𝑚 and 𝑡𝜖(0, 1) 𝑠 with the Dirichlet boundary conditions retrieved based on 

equation (3-15). The test was conducted with the following selection of parameters: 𝐷0 =

0.8 𝑚2 𝑠⁄ , 𝐾1 = 1, 𝐾2 = 7,  = 0.4, and 𝛽 = 0.02 1 𝑠⁄ . Although this physical setup is probably 

rare in environmental fluid mechanics, this test is still useful to exercise the solver against 

nonlinear reaction when the diffusivity is a nonlinear function as well. Figure 3-3 shows the 

comparison of the numerical and exact solutions, with good agreement. 

 

3.5.3. Verification with advection dispersion with nonlinear source term 

 The analytical solution given in equation (3-20) provides a valuable benchmark to examine 

stiff problems, and to assess transport solvers for conservation of mass when they encounter 

nonlinear sources. Similar to the case in subsection 3.5.2, this analytical solution is given in 

general parametric form. Figure 3-4 shows the comparison of the numerical and exact solutions 

which were obtained with the following parameters: 𝐷0 = 0.3𝑚
2 𝑠⁄ , 𝑢0 = 0.4𝑚 𝑠⁄ , and 

 = 0.051 𝑠⁄  in the space and time domain 𝑥𝜖(1, 3) 𝑚  and 𝑡𝜖(0, 1) 𝑠 , with the boundary 

conditions constructed based on the analytical solution (3-20). Again, good agreement was 

found. 
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3.5.4. Verification with nonlinear Burgers’ equation  

 The analytical solution of the Burgers’ equation (3-23) provides a valuable benchmark test 

for assessing shock behavior in numerical solutions. In this case, some practical issues need to be 

considered in advance. First, a number of numerical solvers will break down if they are given 

negative concentrations; therefore, a domain of the solution where c is always positive needs to 

be selected. The second point is that the nonlinear advective term has a shocking-up effect on the 

initial concentration distribution, where a smooth solution might develop discontinuity as it 

evolves in time. On the other hand, the dispersive term hinders this effect with smoothing out the 

solution [LeVeque, 2002]. This shock in the solution can be misleading in code verification 

studies as follows. In shock-capturing schemes, shock switches on a mechanism to avoid 

spurious oscillations. For example the action of a flux limiter will reduce the global order of 

convergence [Saltzman, 1994]. This drop in the order of convergence might be mistaken for a 

bug in the code. In other words, the low order solution of a flux limiter can be misrepresented as 

a coding/implementation error. Thus, in general we prefer to use smooth solutions (no shock) in 

tests for code verification activities. 

 Figure 3-5 shows a hypothetical test case we set up for verification of an ADR solver with 

the analytical solution (3-23). Here, the domain extends from 𝑥𝜖(−30, 30) 𝑚 , 𝑡𝜖(0, 10) 𝑠 , 

downstream concentration is 𝑐2 = 1, the upstream counterpart is 𝑐1 = 2, and 𝐷0 = 0.43𝑚2 𝑠⁄  to 

assure a severe case on shock to check the code. 

 

3.5.5. Verification with spatially-varying coefficient ADR solution 

We setup another test case for uncovering potential spatial coding errors in the transport 

solver with the spatially varying coefficient analytical solution, equation (3-27). Tests were 
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performed with 𝑥𝜖(10, 15) 𝑘𝑚 , 𝐾3 = 5106 𝑚3 , 𝐾4 = 10
−4  1 𝑠⁄ , and 𝐾5 = 310−6  1 𝑠⁄ . 

Accordingly, the area was kept between 500  to 333  𝑚2 , velocities fell within the range of 

1 − 1.5𝑚 𝑠⁄ , and the longitudinal dispersion coefficients were kept between 300 − 675𝑚2 𝑠⁄ . 

The test was performed with 𝑡𝜖(8000, 10000) 𝑠  to move away from the initial singularity 

embedded in equation (3-27), which can cause spurious oscillations in the numerical solution. 

Figure 3-6 shows the comparison between the analytical and numerical solutions of the space-

dependent ADR equation, with satisfactory agreement.  

 

3.5.6. Verification with temporally-varying coefficient ADR solution 

 The derived time-dependent analytical solution of ADR, equation (3-31), is a powerful tool 

to detect flaws in the assembly of different operators in fractional-step method. Here, a 

hypothetical estuarine problem was chosen based on the scaling we conducted for the transport 

equation in tidal rivers. The following parameters were used in this test: 

𝑥𝜖(1, 9) 𝑘𝑚, 𝑡𝜖(0.5, 1.5) ℎ𝑟, 𝜔𝑡 = 12.41 ℎ𝑟, 𝐷0 = 194.4𝑚2 𝑠⁄ , 𝐾6 = 2, and 𝑢0 = 0.195 𝑚 𝑠⁄ . 

Values of boundary conditions were retrieved from the analytical solution (3-31) and introduced 

to the code. Figure 3-7 shows the time evolution of a front of pollution. Agreement of the 

solutions is satisfactory.  

 

3.5.7. Verification with analytical solution of tidal flow 

 We set up an advection-reaction test in a dead-end channel (Figure 3-1) with tidal forcing at 

the mouth. The channel depth was chosen to be 𝑑 = 16 𝑚, the tidal amplitude was assumed to 

be 𝑎 = 0.5 𝑚 , tidal frequency was 𝜔𝑡 = 12.41 ℎ𝑟 , and we chose the 𝑙 = 52  𝑘𝑚 ; the basin 

length was set in a way to maintain remote boundaries during the test, and we based the length of 
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initial distribution of mass on the scales suggested by Bedford [1985]. He suggested that the ratio 

of dissolved constituent intrusion length to estuary depth should range from 102 to 104. Hence, 

we set the test with an initial Gaussian plume with a length of 16 𝑘𝑚. Figures 3-8 shows the 

results in which the plume just advects with tidal currents (no decay) and Figure 3-9 shows time 

evolution of initial mass distribution, subjected to linear decay, for one tidal cycle over the 

harbor basin.  

 

3.6. Metrics for Code Verification and Accuracy Validation 

The seven analytical solutions we mentioned in Section 3.5 can be utilized for numerical 

code verification as well as quantitative accuracy assessment. First, major application of the 

derived solutions is providing a benchmark for mesh convergence test for code verification 

studies. This test compares results’ order of accuracy versus formal order of accuracy of the 

discretization. Mesh convergence study is the most solid criteria for assessing codes [Roache, 

1997; Knupp and Salari, 2003]. The procedure quantifies error norms based on an accurate 

benchmark solution (here the analytical solutions) and measure the evolution of error as the mesh 

and time-step size shrink. Detailed discussion of implementation of this test is not within the 

scope of this study [see Roache, 2009]. However, in all cases discussed in this paper, mesh 

convergence studies were conducted. Figure 3-10 shows an example of such studies for the case 

of tidal flows. An acceptance criteria was crafted according to principles from both the software 

and numerical testing fields, measuring the grid convergence index of 𝐿1, 𝐿2, and 𝐿∞ (Roache, 

2009). In this study, we choose the 𝐿∞ since it is the most restrictive norm. The quantities we 

cared about were: 1) accuracy; 2) mass conservation; 3) quality of the answer (shape 

preservation). We called exactly 2
nd

 order in 𝐿∞ “perfect” convergence. We called exactly 2
nd
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order in forgiving norm (𝐿1  and 𝐿2 ) “good” convergence. In case we could match one of 

forgiving norms with low quality of shape preservation (wiggles) we call it “satisfactory” 

convergence. 

 

The second application of aforementioned analytical solutions is providing a benchmark for 

models’ accuracy validation. Accuracy validation metrics provides objective quantitative values 

as opposed to subjective qualitative descriptions as “weak” or “Satisfactory” agreement. Herein, 

we address the accuracy of the numerical solution based on three commonly used metrics: a) 

normalized root mean square error (also called Scatter Index); a) bias; c) coefficient of 

determination “𝑅2”. The first index is a measure of accuracy; the second index indicates model 

over/under estimation; and the third index is a general measure of goodness of fit [Montgomery, 

2005]. Comprehensive discussion of various accuracy validation metrics is given in Roache 

(2009), Oberkampf and Roy (2010) and Willmott et al., (2012). Table 3-2 provides the values of 

model accuracy metrics (SI, Bias, and R
2
) for the eight test cases we provided in the Section 3.5. 

 

3.7. Alternative Code Verification Approaches 

 At this point, it is relevant to address several issues. First, why did not we use alternative 

code verification techniques (other than MES)? Three alternatives to MES are the Method of 

Manufactured Solution (MMS), Richardson Extrapolation, and cross-solver verification [Roache, 

2009; Oberkampf and Roy, 2010]. Although we attempted to apply those methods, they could 

not carry out our comprehensive verification needs. MMS was not able to provide an appropriate 

benchmark for stiff source terms, given the fact that MMS applies to linear operators. Even if the 

above mentioned obstacle is overcome, still practical difficulties of utilizing the MMS exist, 
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because linking a complex solution structure to the source code of any solver is an error prone 

and resource-intensive task. After MMS, we tried Richardson Extrapolation [Roache, 2009] 

where the convergence behavior of the code can be observed although it would not provide 

information on the level of accuracy. Therefore, we strongly believe we cannot rely on 

Richardson Extrapolation solely as a perfect error probing tool. On top of that, Richardson 

extrapolation needs several steps of numerical post-process. There are several cases of using of 

cross-solver verification as the last resort [Oberkampf and Roy, 2010]. However, even if the 

benchmark code already shows extensive empirical evidence, it is still thoroughly impossible to 

believe it is error-free without conducting formal verification tests. Furthermore, there would be 

tedious practical difficulties in verifying a code based on another code’s results [Roache, 2009]. 

3.8. Conclusions and Final Remarks  

This work was oriented towards devising useful tools for the verification of a scalar transport 

solver, via the MES. For the sake of completeness, we started the code verification with a well-

known analytical solution of the ADR equation with uniform flow, constant dispersivity, and 

decay. Then, four new closed-form analytical solutions were presented and used for verification 

of one dimensional ADR solver. In general, the conservative form of the transport equation is of 

interest for researchers; thus, this study delivered results in the conservative form. Analytical 

solutions of ADR equation covered the cases of: 1) stagnant flow, nonlinear dispersivity and 

nonlinear source; 2) uniform conservative flow, constant dispersivity and nonlinear source; 3) 

spatially varying flow and dispersivity, conservative flow and no source; 4) time-dependent flow 

and dispersivity, conservative flow, no source. In addition, we employed two analytical solutions 

of the tidal-flow and Burgers’ equations with simple tricks to make appropriate benchmarks for 

verification of specific aspects of the transport code. The former has spatially- and temporally-



73 
 

varying conservative flow, no diffusivity and linear reaction, and the latter evaluates the 

nonlinearity in the advective term. Altogether, the suite of seven exact solutions we provided in 

this study is complete in the sense that it would be enough to uncover any probable scheme 

limitation or coding error in the one-dimensional form of the scalar transport equation (3-1). This 

set of solutions is able to test all terms in the complex, nonlinear structure of the transport 

equation, in the most generic form.  

The analytical solutions presented in this paper were employed to verify a sediment transport 

code. Several temporal and spatial mis-indexing and coding errors were detected which could not 

be detected with previous analytical solutions. These solutions perform better than alternative 

exact solutions from the literature because they were able to discover defect in spatiotemporal 

discretization of velocity, area and dispersion coefficient. Furthermore, the new solutions satisfy 

continuity of water, while the former analytical solutions did not. Therefore, they would be 

employed for evaluating solvers wherein the hydrodynamic module and transport module are 

working coupled. The six analytical solutions we derived are in the most general form, they are 

carefully checked for common mistakes in the solution procedure. Finally, although the new 

analytical solutions are one-dimensional, they could be employed for preliminary verification of 

multi-dimensional transport codes as well. 
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Appendices of Chapter 3 

3-A. Derivation of time dependent transport equation  

 In riverine mixing, Deng et al. [2001] characterized the longitudinal dispersion coefficient as 

follows: 

𝐷 =
0.15

8𝜀𝑡0
(
𝑤

𝑑
)
5
3⁄

(
𝑈

𝑢∗
)
2

𝑑 𝑢∗                                                                                                      (3-A1) 

where 𝑤  [𝐿 ] indicates the river width, 𝑑  [𝐿 ] refers to the average water depth, 𝜀𝑡0  is a 

dimensionless coefficient, 𝑈 [𝐿/𝑇] is the cross-sectionally averaged velocity, and 𝑢∗ [𝐿/𝑇] is the 

shear velocity. Thus, if we assume the geometry of flow is not changing with time, it can be 

shown that the longitudinal dispersion coefficient in rivers only varies due to the average 

velocity (given that shear velocity is proportional to the average velocity). 

On the other hand, values of dispersion in porous media change with the absolute value of the 

Darcy velocity [Bear, 1972]. 𝐷 can be considered as: 

𝐷 = 𝜔𝐷𝑚 + 𝛼𝐿|𝑈|                                                                                                                  (3-A2) 

where 𝐷𝑚  [𝐿2/𝑇] is the constituent’s molecular diffusion in porous media, 𝜔  [𝐿3/𝐿3] is the 

porosity, 𝛼𝐿 [𝐿] refers to the intrinsic dispersivity, and 𝑈 refers to the Darcy velocity. In most of 

the groundwater flow regimes, the longitudinal dispersion coefficient only depends on flow 

condition and the molecular diffusion contribution is negligible [Bear, 1972; Logan, 2001]. 

 The velocity in the river can be considered as the superposition of tidal flow (bidirectional) 

and river base flow (unidirectional). In the subsurface flow, for an aquifer located in tropical 

regions, groundwater velocity could exhibit a similar flow pattern: a sinusoidal component which 

induces fluctuation over a base flow [Kumar and Kumar, 1998; Kumar et al., 2009]. Considering 
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the abovementioned scenarios, we can build up a hypothetical velocity field and hydrodynamic 

dispersivity as: 

𝑢 = 𝑢𝑏𝑎𝑠𝑒 + 𝑢𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 = 𝑢0(𝐾6 + 𝑐𝑜𝑠 𝜔𝑡𝑡)                                                                           (3-A3) 

𝐷(𝑡) = 𝐷0𝑢(𝑡) = 𝐷0(𝐾6 + 𝑐𝑜𝑠 𝜔𝑡𝑡)                                                                                     (3-A4) 

where 𝐾6  is a constant. Given that the dispersion coefficient has to be positive, we have to 

assume 𝐾6 > 1 for stability reasons; thus equation (3-3) without sink/source term becomes:  

𝜕(𝐴0𝐶)

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐴0𝐷0(𝐾6 + 𝑐𝑜𝑠𝜔𝑡𝑡)

𝜕𝐶

𝜕𝑥
) −

𝜕(𝐴0𝑢0(𝐾6+𝑐𝑜𝑠𝜔𝑡𝑡)𝐶)

𝜕𝑥
                                                  (3-A5) 

 

3-B. Numerical discretization of the ADR equation 

 Three schemes were applied to solve these problems numerically. First, in cases 5.1, 5.5, 5.6 

and 5.7, we discretized the hyperbolic (advective) term of the ADR equation with the modified 

two-step version of Lax-Wendroff method in the FVM framework. This method is second order 

accurate, whereas it has third order phase error of (𝐶𝐹𝐿2 − 1)
(2𝜋𝑘∆𝑥)3

6𝐷3
+ 𝑂(∆𝑥5) . As the 

scheme’s local truncation error equals to −
1

6
𝑢∆𝑥2(1 − 𝐶𝐹𝐿2)

𝜕3𝑐

𝜕𝑥3
+ 𝑂(∆𝑡3) , it has a low 

numerical diffusion [Hundsdorfer and Verwer, 2003]. The diffusive term was discretized with a 

weighted time scheme. The reactive term was treated with the Heun ODE solver which is 

incorporated in the advection solver [Radhakrishnan, 1984]. Finally, the above three operators 

were assembled by employing the fractional-step method to obtain second order accuracy in both 

time and space discretization [LeVeque, 2002; Zamani and Bombardelli, 2011]. Second, in case 

5.2, we employed a weighted time scheme for the diffusion operator, coupled with a Heun ODE 

solver, in a FDM. Third, in cases 5.3 and 5.4, we employed a Lax-Wendroff method in the FDM 

http://www.google.com/search?tbo=p&tbm=bks&q=inauthor:%22Krishnan+Radhakrishnan%22
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framework for the advective term, and Crank-Nicolson for the diffusive term, coupled with the 

Heun ODE solver [LeVeque, 2002]. 
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Figures 

 

Figure 3-1. Schematic of the tidal forcing domain in a dead-end harbor basin. (top) Basin cross 

section with the initial position of the free surface. (bottom) Position of the pollution mass 

subjected to the tidal forcing. Tidal compression happens in mid tidal period [adopted from 

Wang et al., 2008]. 
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Figure 3-2. Comparison of analytical (exact) and numerical solutions of the advection-diffusion-

reaction equation with uniform flow, linear decay and constant dispersivity, ∆t = 100 s and 

 ∆x = 100 m. 
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Figure 3-3. Evolution in time of the numerical and exact solutions to the nonlinear diffusion-

reaction equation, ∆t = 0.001 s and ∆x = 0.312 m. 
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Figure 3-4. Analytical and numerical solutions for the advection-diffusion-reaction equation with 

uniform flow and constant dispersivity, subjected to nonlinear decay, ∆𝐭 = 𝟎. 𝟎𝟏 𝐬 and ∆𝐱 =

𝟎. 𝟏𝟐 𝐦. 
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Figure 3-5. Comparison of numerical and analytical solutions of the Burgers’ equation for 

verification purpose of an ADR equation, ∆𝐭 = 𝟎. 𝟎𝟓 𝐬 and ∆𝐱 = 𝟏. 𝟎 𝐦. Numerical solution 

evolves in time and shows over-shooting near the front. 
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Figure 3-6. Evolution in time of a pollution front subjected to non-uniform advection and 

spatially-varying dispersion coefficient. Comparison of numerical and analytical solutions, 

∆𝐭 = 𝟕. 𝟖𝟏 𝐬 and ∆𝐱 = 𝟑𝟗. 𝟎𝟔 𝐦. 
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Figure 3-7. Evolution in time of a pollution front subjected to non-uniform advection and 

temporally-varying dispersion coefficient. Comparison of numerical and analytical solutions, 

∆𝐭 = 𝟎. 𝟎𝟔 𝐬 and ∆𝐱 = 𝟎. 𝟐𝟖 𝐦. 
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Figure 3-8. Evolution in time of a pollutant mass subjected to a tidal flow field. Concentration 

distribution subjected to one cycle of tidal advection is compared with its initial distribution as 

benchmark. Tidal compression of plume in half of the tidal period is noticeable, ∆𝒕 =

𝟏𝟕𝟒. 𝟓 𝐬 and ∆𝒙 = 𝟒𝟎𝟎 𝐦. 
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Figure 3-9. Evolution in time of a pollutant mass subjected to tidal flow field and linear decay, 

∆𝒕 = 𝟏𝟕𝟒. 𝟓 𝐬 and ∆𝒙 = 𝟒𝟎𝟎 𝐦. 
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Figure 3-10. Observed versus formal order of accuracy. Mesh convergence study for the tidal 

advection-reaction test. Norm 𝑳∞ measures the worst error in the domain; 𝑳𝟐 is the energy norm 

of the errors; and norm 𝑳𝟏 denotes the average of absolute errors in the domain. Three error 

norms show second order convergence rate. 
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Tables 

Table 3-1. Summary of analytical solutions of primarily single-species transport equations. The 

described literature possesses particular emphasis on the purpose of code verification.  

Author 

Dimensionality 

and coordinate 

system 

Transport equation 

Solution Method Note 

Velocity Diffusivity Source 

Fourier 

(1822) 

1-D, Cartesian  Stagnant  Constant No source, linear 

source 

Eigenfunction 

expansion 

Heat equation 

Kirchhoff 

(1894) 

1-D, Cartesian Stagnant  Function of 

state variable 

No source, linear 

source 

Kirchhoff 

transformation 

Linearizes the nonlinear heat 

equation   

Boltzmann 

(1894) 

1-D, Cartesian Stagnant  Constant No source, linear 

source 

Reduction to ODE via 

similarity solution 

First similarity solution for solving 

transport equation 

Carslaw and 

Jaeger (1959) 

1-D, 2-D and 3-

D, Cartesian, 

cylindrical, 

conic and 

spherical  

Stagnant  Time- and 

space-

dependent, 

and 

concentration 

dependent 

Nonlinear and 

linear 

Laplace transform, 

integral transform, 

Green's function 

Fundamental solutions, Stefan 

problem, almost covered all the 

knowledge to that point 

Ogata and 

Banks (1961) 

1-D, Cartesian Uniform Constant No source Laplace transform One of the first known analytical 

solution of the ADR equation 

Cho (1971) 1-D, Cartesian, 

3 species  

Uniform Constant  First order 

reaction  

Laplace transform Pioneer on the analytical solutions 

of reactive transport  

Bear (1972)  1-D, 2-D and 

Cartesian and 

radial  

Uniform  Constant Linear decay Transform to known 

solutions, Laplace 

transform, 

eigenfunction 

expansion  

All the analytical solutions of the 

ADR equation for groundwater to 

date are presented in chapter 10.6  

Crank (1979) 1-D, 2-D and 3-

D Cartesian, 

cylindrical and 

spherical 

Stagnant Time- and 

concentration

-dependent 

Nonlinear and 

linear 

Green's function, 

separation of variables, 

Laplace transform 

Fundamental solutions, moving 

boundary, Stefan problem, perhaps 

one of the most prolific 

contributions to the mathematics of 

diffusion equation  

van 

Genuchten 

and Alves 

(1982) 

1-D, Cartesian Uniform Constant No source, zero 

order, first order, 

reactive first order 

Laplace transform, 

eigenfunction 

expansion  

The report almost gathered all the 

analytical and approximate 

solutions of 1-D ADR excluding 

cases of nonlinear source, and non-

constant velocity and dispersivity 

Mohsen and 

Pinder (1984) 

1-D, Cartesian Uniform and 

steady condition 

Constant No source Fourier eigenfunction 

expansion 

Used in numerical verification 

Lassey 

(1988) 

1-D, Cartesian Uniform Constant  Sorption and first 

order decay 

Eigenfunction 

expansion (Bessel 

function)  

The semi-analytical solution is 

implicit and needs numerical 

evaluation  

Tirabassi 

(1989) 

2-D, Cartesian, 

steady state 

Uniform Constant and 

D(z)  

No source Eigenfunction 

expansion (Bessel 

Air pollution, deposition of 

emission is linear function of 
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function) vertical velocity  

Barry and 

Sposito 

(1989) 

1-D, Cartesian Time dependent Time 

dependent 

No source Fundamental solution 

via Green's function, 

Laplace transform  

Review on the general solution 

techniques and problems with 

closed-form solution 

Yates (1990, 

1992) 

1-D, Cartesian  Uniform Velocity and 

distance 

dependent 

Linear sorption 

first order decay 

Laplace transform, 

similarity solution, 

Bessel function  

Solutions are in terms of hyper-

geometric function and needs 

numerical evaluation 

Basha and 

El-Habel 

(1993) 

1-D, Cartesian Uniform Constant, 

linear and 

exponential 

time 

dependent 

Linear adsorption, 

first order reaction 

fundamental solution No closed-form solution for all 

cases, solutions need numerical 

evaluation  

Ellsworth 

and Butters 

(1993) 

3-D, Cartesian  Uniform Constant Impulse Green's function, 

Laplace and Fourier 

transforms, 

eigenfunction 

expansion 

Solutions need numerical 

evaluation 

Philip (1994) 2-D and 3-D, 

radial  

Uniform Constant No source Transformation to 

known solutions  

The solution is steady state and is 

not in closed-form  

Aral and 

Liao (1996) 

2-D, Cartesian Uniform Function of 

time  

Linear decay Fundamental solution  Closed-form solutions are given for 

constant, linear/exponential time 

dependent dispersivity 

Logan (1996)  1-D, Cartesian Uniform Constant and 

distance 

dependent  

Rate-limited 

adsorption, linear 

equilibrium 

isotherm, and 

decay 

Complex separation of 

variables  

Solution based on hypergeometric 

function, requires numerical 

evaluation  

Zoppou and 

Knight 

(1997, 1999) 

1-D and 3-D, 

Cartesian 

Distance 

dependent 

Distance 

dependent 

No source  Transform to Ogata 

and Banks (1961) 

solution 

Velocity field does not holds 

continuity of mass 

Sun et al. 

(1999) 

3-D, Cartesian Constant Constant  Multi-species 

linear reaction and 

sorption 

Substitution of 

variables 

Three example solved for 3/4 

species in 1-D and 3-D 

Leij and van 

Genuchten 

(2000) 

3-D, Cartesian Uniform 

unidirectional  

Constant, Dx, 

Dy and Dz 

equilibrium and 

nonequilibrium  

Green's function Different examples constructed and 

solved based on the fundamental 

solutions 

Leij et al. 

(2000) 

3-D, Cartesian,  Uniform 

unidirectional 

Constant Linear, 

equilibrium and 

nonequilibrium  

Fundamental solution Application of Green's function for 

infinite and semi-infinite 3-D solute 

transport 

Logan (2001, 

2008) 

1-D, Cartesian, 

Radial  

Uniform and 

steady condition  

Constant Linear decay, 

equilibrium and 

nonequilibrium 

Separation of 

variables, Laplace, 

Fourier and integral 

transforms, Green's 

function, distribution 

solutions, 

eigenfunction 

expansion, and 

traveling wave, 

perturbation 

techniques  

General review on the numerical 

and analytical solution techniques 

for ADR and heat equations  
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Khalifa 

(2003) 

2-D, Cartesian 

and cylindrical  

Uniform 

unidirectional 

Constant No source Similarity solution, Lie 

group transformation 

Solution based on hypergeometric 

functions 

Neelz (2006) 1-D, Cartesian  Distance 

dependent 

Distance 

dependent 

No source Solution by Zoppou 

and Knight (1997) 

Discussed the limitation of the 

solution for code verification 

Demetriou, et 

al. (2007) 

2-D, Cartesian  Uniform 

unidirectional 

Constant No source Similarity solution, Lie 

symmetry 

Several cases have been solved, 

solution based on the Bessel 

functions 

Cannon 

(2008) 

1-D, Cartesian Uniform 

unidirectional 

time and 

space 

dependent, 

ad hoc cases 

of nonlinear 

Arbitrary form of 

source discussed 

Green's function, 

separation of variables, 

integral transform, 

variational principle, 

traveling wave 

Fundamental solutions and 

transform techniques, Stefan 

problem. The book is a highly-

acclaimed guide to heat diffusion 

equation  

Chen et al. 

(2008) 

2-D, Cartesian Uniform 

unidirectional 

Distance 

dependent 

No source Power series Solution needs numerical 

evaluation not applicable for code 

verification purpose  

Jaiswal et al. 

(2009) 

1-D, Cartesian  Case:  

1) Uniform and 

2) non uniform  

1) Time 

dependent 2) 

distance 

dependent 

No source Laplace transform Flow field does not hold continuity 

of mass  

Singh et al. 

(2009) 

1-D, Cartesian Time dependent Time 

dependent 

No source Transform to 

homogeneous problem, 

Laplace transform, 

separation of variables  

Full derivation of time dependent 

problem provided step by step 

Guerrero et 

al. (2009) 

1-D, Cartesian, 

transient and 

steady state 

Constant  Constant  Linear decay Integral transform, 

eigenfunction 

expansion  

Results are series and not applicable 

for code verification (as we tested ~ 

300 terms needed to go over the 

computer accuracy)  

Guerrero and 

Skaggs 

(2010) 

1-D, Cartesian Distance 

dependent  

Distance 

dependent 

Linear distance 

dependent 

Integral transform, 

separation of variables  

Results do not have closed-form 

and are not applicable for code 

verification 

Singh et al. 

(2010) 

2-D Cartesian 

and cylindrical 

Time dependent 

in x and y 

direction 

Time 

dependent  

No source Reduction of advective 

term via substitution 

and Hankel transform 

Solutions are series based 

Kumar et al. 

(2010) 

1-D, Cartesian Cases 

1) u(x) 

2) u(t) 

3) u = constant 

Cases  

1, 2) 

D=constant 

b) D = D(t) 

No source Transformation to 

formerly known 

solutions  

Space dependent solution does not 

hold conservation of water 

Yadav et al. 

(2010) 

1-D, Cartesian Uniform flow D=D(t) Linear decay Laplace transform Dispersivity is linear and nonlinear 

function of time 

Jaiswal et al. 

(2011) 

2-D, Cartesian a) u(t) 

b) u(x) 

Function of 

velocity 

Impulse  Laplace transform, 

reduction to formerly 

known solutions 

Flow field does not hold continuity 

of mass 

Chen et al. 

(2011) 

2-D, cylindrical  Uniform 

unidirectional 

Constant No source Laplace and Hankel 

transform 

It needs more than first 200 terms to 

reach required accuracy for code 

verification 

Savovic and 

Djordjevich 

(2012) 

1-D, Cartesian a) Constant b) 

time and c) 

space dependent  

a) Constant 

b) time and 

c) space 

dependent 

No source Solution by Kumar et 

al. (2010)  

Solutions employed in code 

verification studies of a FDM code 
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Table 3-2. Accuracy metrics for assessment of numerical model results versus benchmark values. 

Test 

 

Scatter Index (SI) 

 
√
1

𝑁
∑ (𝑀𝑖−𝐵𝑖)
𝑁
𝑖=1

2

1

𝑁
∑ 𝐵𝑖
𝑁
𝑖=1

=
𝑅𝑀𝑆𝐸

�̅�
 

Bias 

1

𝑁
∑(𝑀𝑖 − 𝐵𝑖)

𝑁

𝑖=1

 

Coefficient of determination (R2)  

1 −
∑ (𝑀𝑖 − 𝐵𝑖)

2  𝑁
𝑖=1

∑ (𝑀𝑖 − �̅�)
2  𝑁

𝑖=1

 

Linear ADR  

 (Figure 3-2) 
0.003423 0.000131 0.999806 

Nonlinear diffusion reaction  

(Figure 3-3)  
0.003076 0.000461 0.988702 

ADR with nonlinear source 

term (Figure 3-4) 
0.000685 0.000135 0.999992 

ADR with nonlinear advective 

term (Figure 3-5) 

0.000183 -0.000157 0.999999 

Spatially dependent ADR 

 (Figure 3-6)  

0.000685 0.000135 0.999992 

Temporally dependent ADR 

(Figure 3-7) 

0.000183 -0.000157 0.999999 

Tidal flow advection 

 (Figure 3-8) 

0.004300 0.002556 0.999903 

Tidal flow advection decay  

(Figure 3-9) 

0.000004 0.009627 0.994229 
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Table 3-3. Summary of the seven analytical solutions for numerical verification of transport 

solvers discussed in this paper. 

Equation and limits  

𝟎 < 𝒕 ;   𝟎 < 𝑫𝟎 

 

Analytical solution 𝑪(𝒙, 𝒕) 
Boundary 

condition 
Note Purpose  

𝐶𝑡 = (𝐷0𝐶𝑥)𝑥   − (𝑢0𝐶)𝑥

− 𝐶 

−∞ < 𝑥 < ∞  

 0 <  

 

1

√4𝜋𝐷0𝑡
𝑒
−𝑡−

(𝑥−𝑢0𝑡)
2

4𝐷0𝑡  
Based on the 

analytical 

solution2 

Conservative ADR 

equation with 

uniform flow, 

constant dispersivity 

and linear decay 

Start verification 

with this 

analytical 

solution to 

check general 

discretization 

𝐶𝑡 = (𝐷0𝑒
𝐶𝐶𝑥)𝑥   − 𝑒

𝐶 

−∞ < 𝑥 < ∞  

 0 <  

 

𝑙𝑛

(

 
 𝑒

𝑥√

𝐷0 + 𝐾1𝑒

−𝑥√

𝐷0 +




𝐾2 − 𝑡

)

 
 

 

Based on the 

analytical 

solution 

Diffusion Reaction 

with nonlinear 

dispersivity and 

nonlinear reaction  

Verification of 

the solver for 

nonlinearity in 

dispersivity and 

reaction term  

𝐶𝑡 = 𝑢0𝐶𝑥 + 𝐷0𝐶𝑥𝑥 − 𝐶
3 

−∞ < 𝑥 < ∞  

 0 <  

 

√
2𝐷0


2(𝑥 + 𝑢0𝑡)

(𝑥 + 𝑢0𝑡)
2 + 6𝐷0𝑡

 

 

Based on the 

analytical 

solution 

ADR with uniform 

flow, constant 

dispersivity and 

nonlinear reaction 

Verification of 

the solver for 

stiff nonlinear 

problems 

𝐶𝑡 = 𝐷0𝐶𝑥𝑥 − 𝐶𝐶𝑥   

𝐶 (𝑥 , 𝑡) = 𝑐2 

𝐶 (𝑥 − , 𝑡) = 𝑐1 

−∞ < 𝑥 < ∞  

 

𝑐1 +
𝑐2 − 𝑐1

1 + 𝑒
(𝑐2−𝑐1)(𝑥 − 

(𝑐2+𝑐1)𝑡
2 ) 2𝐷0⁄

 
Based on the 

analytical 

solution 

Choose c1and c2 

such that solutions 

remains positive, use 

D0 to smear out 

sharpness of the 

shock 

Verification of 

the solver for 

nonlinearity in 

advective term  

(𝐴𝑥−1𝐶)𝑡

= (𝐴0𝐷0𝑥𝐶𝑥)𝑥 − 𝐴0𝑢0𝐶𝑥 

0 < 𝑥 < ∞  

0 < 𝐴0 

      
𝐶0

2
{𝑒𝑟𝑓𝑐(

𝑙𝑛 (
𝑥

𝑥0
) − (𝑢

0
− 𝐷0)𝑡

2√𝐷0𝑡
)

+ 𝑒𝑥𝑝 (
(𝑢
0
− 𝐷0)𝑙𝑛 (

𝑥

𝑥0
)

𝐷0
) 𝑒𝑟𝑓𝑐(

𝑙𝑛 (
𝑥

𝑥0
) + (𝑢

0
− 𝐷0)𝑡

2√𝐷0𝑡
)} 

Based on the 

analytical 

solution 

ADR equation with 

mass conservative 

flow with spatially 

varying transport 

coefficients  

Exposing bugs 

in spatial 

discretization of 

advection and 

diffusion 

(𝐴0𝐶)𝑡

= (𝐴0𝐷0(2 + 𝑐𝑜𝑠𝜔𝑡𝑡)𝐶𝑥)𝑥

− (𝐴0𝑢0(2 + 𝑐𝑜𝑠𝜔𝑡𝑡)𝐶)𝑥 

0 < 𝑥 < ∞   

0 < 𝐴0 

𝐶0
2

{
 

 

𝑒𝑟𝑓𝑐

(

 
𝑥 − 𝑢0(2𝑡 +

𝑠𝑖𝑛(𝜔𝑡𝑡)
𝜔𝑡

)

2√𝐷0(2𝑡 +
𝑠𝑖𝑛(𝜔𝑡𝑡)
𝜔𝑡

)
)

 

+ 𝑒𝑥𝑝 (
𝑢0𝑥

𝐷0
) 𝑒𝑟𝑓𝑐

(

 
𝑥 + 𝑢0(2𝑡 +

𝑠𝑖𝑛(𝜔𝑡𝑡)
𝜔𝑡

)

2√𝐷0(2𝑡 +
𝑠𝑖𝑛(𝜔𝑡𝑡)
𝜔𝑡

)
)

 

}
 

 

 

Based on the 

analytical 

solution 

ADE with mass 

conservative flow 

time dependent 

varying transport 

coefficients 

Exposing bugs 

in temporal 

discretization, 

efficiency of 

fractional-step 

method  

(𝐴𝐶)𝑡 = −𝑢(𝐴𝐶)𝑥 − 𝐶 

𝑢(𝑥, 𝑡)

= 𝑚 sin(𝑛 (𝑙 − 𝑥)) sin(𝜔𝑡𝑡) 

𝜁(𝑥, 𝑡)

= 𝑎 [
𝑐𝑜𝑠(𝑛(𝑙 − 𝑥))

𝑐𝑜𝑠(𝑛𝑙)
] 𝑐𝑜𝑠 (𝜔𝑡𝑡) 

A(x,t)=(𝑑 + 𝜁(𝑥, 𝑡))𝑤 

𝐶(𝑥, 𝑡0) = 𝐶(𝑥, 𝑡0 + 𝑘𝑇𝑡𝑖𝑑𝑒), Final pollution concentration will 

be the same as initial distribution after passing k tidal cycles, 

where k is a positive integer. Smooth Gaussian  profile might 

be a good choice [𝐶(𝑥, 𝑡0) = 𝐾1𝑒
−
(𝑥−𝐾2 )

𝐾3
2

] 

set Ki to maintain remote BC in the test 

Based on the 

analytical 

solution, set Ki 

such that 

remote BC in 

the test is 

maintained  

Advection -reaction 

in tidal flow 

advection linear 

𝑛 =
𝜔𝑡

√𝑔𝑑
 

𝑚 =
(𝑎√𝑔𝑑)

𝑑 cos(𝑛𝑙) 
  

Verification of 

spatial and 

temporal defects 

in the 

discretization of 

advective term 

 

                                                           
2
 Dirichlet, Neumann and Robin boundary conditions might be constructed based on these analytical solutions 
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Chapter 4: Assessment of Sequential and Parallel Implementation of 

Current Methods for The Evaluation of Einstein’s Integrals 

4.1. Introduction 

 Numerous formulations have been proposed for the computation of the total sediment 

transport load during the last century (see Julien, 2002; Vanoni, 2006; García, 2008). Existing 

methods can be categorized in three main groups (adapted from Julien, 2002): a) formulae that 

are derived via regression on experimental data, b) formulae based on the balance of energy such 

that the work done to carry particles is related to the energy expenditure; and c) formulations 

based on other first principles. Among those methods, Einstein’s method (Einstein, 1950) is 

based on first principles and it is built on the rigorous foundation of continuum mechanics 

(Julien, 2002; Guo and Julien, 2004; Vanoni, 2006; Shah-Fairbank et al., 2011).  

 Einstein’s method is widely considered as one of the cornerstones of sediment mechanics 

(Julien, 2002; García, 2008). This method makes use of two integrals for the calculation of the 

suspended-sediment load. Without considering the multiplying factors, Einstein’s integrals are 

defined as (Einstein, 1950): 

����, �� = 	 
���
� 
�

�
� ��         (4-1) 

����, �� = 	 
���
� 
�

�
� �� � ��         (4-2) 

in which, �� and �� are the first and second Einstein’s integrals; � is the bedload-layer thickness, 

� ∈ [0.0001, 0.1] (which is usually considered as � = 2� in the absence of bed-forms and �	is 

the particle diameter); � is the vertical coordinate, which is scaled with the water depth; and � is 

the Rouse (dimensionless) number, defined as the ratio of the particle fall velocity and the 
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product of the von Kármán constant �, the inverse of the Schmidt number (�, Bombardelli and 

Jha, 2009; Jha and Bombardelli, 2009) and the shear velocity, �∗. The Rouse number varies 

between 0.1	and 6 in practical applications.  

 As analytical solutions of those integrals do not exist, Einstein (1950) provided 

nomograms for their calculation. Since using nomograms impedes the automation of Einstein’s 

method, several researchers developed simplifications, as is the case of Colby and Hubbell 

(1961), Toffaleti (1968), and Simons et al. (1981). Einstein’s method remained unused in 

computer codes until recently (Abad et al., 2008; Shah-Fairbank et al., 2011). In modern 

sediment-transport codes (such as HEC-RAS, U.S. Army Corps of Engineers, 2010), the 

difficulty of calculation of Einstein’s integrals hinders the employment of Einstein’s method. 

The problem is that using common numerical integration techniques is time consuming due to 

the sharp gradients in the integrand functions near the bed (Nakato, 1984; see also Figure 2 in 

Zamani and Bombardelli, 2016). To overcome this issue, several authors devised schemes to 

approximate Einstein’s integrals, from computational approximations, to the use of convergent 

series solution, and regression based schemes (Nakato, 1984; Guo and Wood, 1995; Guo and 

Julien, 2004; Abad and García (Abad et al., 2006); Roland and Zanke (Abad et al., 2006); 

Srivastava (Abad et al., 2006); García, 2008; Shah-Fairbank et al., 2011). Given this menu of 

methods, there is the natural question on which one(s) is(are) the most convenient for each 

particular case. 

In this technical note, we conduct a systematic study of existing methods of 

approximation of first and second Einstein’s integrals including the method by Nakato (1984), 

series-based schemes by Guo and Julien (2004), regression formula by Abad and García (Abad 

et al., 2006), modification of Guo and Julien’s method by Roland and Zanke (Abad et al., 2006), 
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and the method by Srivastava (Abad et al., 2006). We endeavor to uncover singularities or 

regions of inaccuracy in the above methods in order to provide “optimal” solutions in different 

ranges of all admissible Rouse numbers and bedload-layer thicknesses (960 sets of data). We 

assess the methods based on three criteria: a) accuracy, b) computational efficiency, and c) the 

efficiency of parallel versions of those schemes, which we present for the first time to the best of 

our knowledge.  

Next section briefly introduces existing methods. (We provide their formulations in 

Appendix 1 for the sake of completeness.) Later on, we provide the assessment of accuracy and 

efficiency of the aforementioned methods. Then, we present the parallel versions of those 

methods and assess their efficiency. The paper finishes with an overall evaluation of all 

methodologies. 

 

4.2. Methods for The Calculation of Einstein’s Integrals  

Evidently, the first effort to compute Einstein’s integrals ‒ instead of using his 

nomograms ‒ was conducted by Nakato (1984). Nakato employed the additivity of integration 

intervals and divided the integrals into two zones of sharp and mild variations. Nakato computed 

the zone of mild changes numerically with the Simpson’s rule (Appendix 2). Then, he devised an 

analytical solution for the zone of sharp changes (see Appendix 1).  

The second approximation to Einstein’s integrals was developed by Guo and Wood 

(1995). They recast a modification of the first Einstein integral into the beta function. They also 

used the first couple of terms in the expansion of an integral similar to the second Einstein’s 

integral to approximate this second integral. Guo and Wood's derivation was only applicable to 
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non-integer, and less-than-unity Rouse numbers; therefore, we do not consider their work in this 

manuscript.  

The first major step towards the practical solution of Einstein’s integrals was presented 

by Guo and Julien (2004). Guo and Julien resolved the issues of integer values of the Rouse 

number in the method by Guo and Wood (1995). In addition, they utilized integration by parts 

for both Einstein’s integrals, to devise a recursive formula. They derived an infinite series-based 

solution for their recursive equation. These authors provided a comprehensive framework for 

solving the problem (Roland and Zanke (Abad et al., 2006); Srivastava (Abad et al., 2006)). A 

short overview of Guo and Julien's method is provided in the Appendix 1 as well. 

The paper by Guo and Julien (2004) prompted three discussions in 2006, by Abad and 

García, by Roland and Zanke, and by Srivastava, all collected into one single note (Abad et al., 

2006). Abad and García (Abad et al., 2006) devised a regression-based polynomial 

approximation of the solution of each integral. Abad and García claimed their regression formula 

is more practical and easy to implement in sediment-transport codes (Abad et al., 2008). Their 

equations can be found in Appendix 1. 

Roland and Zanke in Abad et al. (2006) studied explicit approximations to improve Guo 

and Julien’s series-based method. They built an explicit closure for the formula by Guo and 

Julien (2004); however, their method has large discrepancies in the values of the �� integral for 

high bedload-layer thicknesses (� > 0.01) with the “exact” value of the integrals (Abad et al., 

2006). Roland and Zanke claimed that their �� algorithm implementation performs a couple of 

times faster than the method by Guo and Julien (2004). The suggested algorithm presents 

singularities in the integer Rouse numbers, as the authors themselves acknowledged (see Figures 

1 to 3 in Roland and Zanke (Abad et al., 2006)). Their study was the first work which discussed 
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computational efficiency (to the best of our knowledge). Roland and Zanke's formulations are 

detailed in the Appendix 1, subsection 4.  

Finally, Srivastava, in Abad et al. (2006), conducted a rigorous mathematical study of 

convergence regions of the partial sums by Guo and Julien (see sums in Eqs. (7) and (8)). He 

showed that in the Guo and Julien (2004) derivation, the series-based solution is either not, or 

slowly converging at some values of � and �. However, some of his concerns were not 

practically effective due to the physical range of the parameters. Srivastava derived another 

explicit formula based on Guo and Julien’s recursive formula. In addition, he proposed 

successful remedies for the problem of singularities in series representation of the Einstein 

integrals. Additionally, he discussed about extra computational burden of switching between 

formulas in integer and non-integer Rouse number values. Details of his method are given in 

Appendix 1, subsection 5. 

Guo and Julien (Abad et al., 2006) responded to the three above comments in a closure. 

They acknowledged that their formula for J� integral converges slowly. They also criticized the 

accuracy of Abad and García's regression, when the bedload-layer thickness is relatively low 

(� < 0.01). Furthermore, they stated that the Roland and Zanke's method is eventually 

equivalent to the combination of Guo and Wood’s (1995) and Guo and Julien's (2004) algorithm. 

Finally, they conducted a study of all methods' speed and employed them in a real world 

example of sediment transport – in the Missouri River near Omaha, Nebraska. Guo and Julien 

(Abad et al., 2006) also provided their pseudo-code. Later on, their algorithm was successfully 

implemented in sediment-transport codes and verified in applications (Shah-Fairbank et al., 

2011). In the next section of the paper we discuss computational efficiency and global and local 

accuracy of the abovementioned methods. 
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4.3. Assessment of the Efficiency and Accuracy of Existing Methods 

  We evaluated the error of and CPU time for each method over a comprehensive dataset 

of 960 pairs of values in the (�, �) space. The prediction errors of those five methods are given in 

Figures 1 and 2 for �� and �� integrals, correspondingly; the error metrics are computed versus 

numerical values obtained by the composite Simpson method (Press at al., 1992) with a dense 

mesh (details of the benchmark algorithm are given in Appendix 2). Figure 3 shows the CPU 

time of the methods ‒ with different parameters ‒ to calculate Einstein’s integrals for the same 

dataset of 960 values of (�, �). The benchmarking machine had an Intel® Core™ i7-2670QM 

Processor with 4 physical cores and 8 GB RAM. Finally, statistical measures of accuracy of 

those five methods are given in Table 1. Definitions of those statistical metrics are given in 

Appendix 3. In the last two columns of Table 1, we also provide the results computed by the 

composite Simpson’s rule with different number of points for comparison.  

 From Figures 1 and 2, it is possible to notice that all methods provide an overall error less 

than 1% for all cases analyzed, which is a necessary feature. From those, Nakato’s method 

provides relatively-low errors, in particular for ��	integral (circled solid line in Figures 1 and 2). 

The accuracy of Nakato’s method is comparable with that of the composite Simpson's integration 

with 1000 points. However, Nakato’s method is the slowest compared to other methods (Figure 

3). 

 The method by Guo and Julien is the most accurate method for approximation of the �� 

integral (Table 1 and Figure 1). The only issue with Guo and Julien algorithm is that its �� 

approximation algorithm is slowly converging for large values of the bedload-layer thickness. 

Also, the error of the �� integral is higher than for all other methods except for the regression 

formula by Abad and García (Table 1). Guo and Julien's method is the fastest method for 
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computation of the �� integral (equal CPU time with Roland and Zanke's method). However, for 

the �� integral, this method requires almost an order of magnitude more time to provide results 

with the equivalent accuracy of Srivastava method (Table 1 and Figure 3). In our test problems 

(Table 1) we did not find significant improvement of the error metrics of computation of �� 

integrals, employing partial sums with more than 50 terms (right-hand term of Equation (8)). 

 We also set up a test to evaluate the accuracy of Eq. (10) as an explicit closure for the 

first right-hand side partial sum in the Eq. (8) – in calculation of the �� integral with Guo and 

Julien's method. Table 2 results show that Guo and Julien’s closure is effective – to the precision 

of less than 0.3% ‒ for all ranges of the Rouse number. Table 2 shows that the method of Guo 

and Julien (without closure; columns 3 to 7) is relatively-inaccurate in large Rouse numbers and 

therein, at least 200 first terms are needed to keep the error below one percent. Also the explicit 

closure by Srivastava ‒ Eq. (17) ‒ is more accurate than the closure by Guo and Julien (Eq. (10)). 

 Roland and Zanke's method has significant error as the bedload-layer reference height 

increases and the Rouse number is larger (Figures 1 and 2); also, it seems that their method is the 

least accurate ‒ for all ranges of parameters ‒ in the calculation of the ��	integral (Figures 2 and 

Table 1). As both Figures 1 and 2 show, the error values of this method spike near the integer 

Rouse number. This method is the fastest method for computing both integrals.  

 Srivastava’s method has a high error in the prediction of the �� integral; the error 

smoothly reduces with the increase of Rouse number. For computing the �� integral, the 

Srivastava’s method is accurate (Table 1 and Figure 2) and is also among the fastest methods 

(alongside Abad and García’s method). Srivastava also devised explicit closures for the Eq. (8). 

His closure overperforms the one by Guo and Julien in terms of accuracy (Table 2). A minor 
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issue with Srivastava’s scheme is it has singularity near � = 2.6 (see Figure 2; see also Guo and 

Julien in Abad et al., 2006). 

 Abad and García's regression is the least accurate scheme in calculating the �� integral. 

However, it still produces results within the accuracy of 2%. Generally, Abad and García’s 

method works better for higher bedload-layer thicknesses (Figures 1 and 2; and see also Guo and 

Julien in Abad et al., 2006). This method is among the fastest methods for both integrals and, as 

the authors mentioned in the original discussion, the method is easy to implement and it does not 

suffer from singularities.  

 It is worth pointing out at this time in the analysis that these evaluations refer to the 

mathematical accuracy of the computation of the Einstein's integrals. However, in practical 

terms, some of the issues expressed here could be considered moot, given the relative accuracy 

of the computation of the Rouse number (Vanoni, 2006), and bedload-layer thickness (Vanoni, 

2006; García, 2008). In fact, the settling velocity and shear velocity are usually known with 

relative-high error and, thus, the computation of the �� and �� integrals is contaminated with the 

“input parameter uncertainty” (ASME V&V20, 2009). In addition, even if we assume that there 

is no inaccuracy in the values of � and �, there is a second type of inaccuracy in the Einstein's 

method. Since there are simplifying and distinct assumptions in the derivation of Rousean profile 

(see Vanoni, 2006; Bombardelli and Jha, 2009; Liu and Nayamatullah, 2014), the Einstein's 

method itself is subjected to “model structural uncertainty” (ASME V&V20, 2009). Considering 

those two type uncertainties, it can be argued that even excessive reducing of “numerical error” 

will not warrant improvement in overall error in sediment-transport modeling. 
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4.4. Parallelization Efficiency of Algorithms  

Any advanced sediment-transport code requires multiple grain-size simulation capability 

to mimic non-uniform particle size distribution in natural streams (Papanicolaou et al., 2008). In 

sediment-transport software, hydrodynamics and transport solvers are commonly one-way 

coupled assuming a dilute concentration of particles (Papanicolaou et al., 2008); thus, all grain-

classes are transported by a unique flow field in a master-slave connection. The above facts 

evoke utilizing parallel algorithms for sediment transport solvers to increase the computational 

efficiency (see for example, Khosronejad et al., 2011; Keshtpoor et al., 2015). We performed 

integration of Einstein integrals on multicore processors.  

In general, shared-memory, message-passing, and implicit programming models can be 

used to write the parallel programs (MathWorks, 2015). Shared-memory models are very 

efficient and suitable to be used for multicore processors (and used in this study). 

Parallel for-Loop (parfor) of MATLAB’s Parallel Computing Toolbox
TM

 was used to 

parallelize the calculations of the integrals on multicore (MathWorks, 2015). The performance of 

the parallelized version of the methods was evaluated on an Intel i7-2670QM multicore 

processor utilizing different number of cores for a dataset of 9000 pairs of inputs. Resulting 

speedups (see Appendix 4-C) for the �� and 	�� integrals are shown in Figures 4a and 4b, 

correspondingly. 

The best performance is achieved by the composite Simpson’s method, where the 

speedup is close to the ideal line for parallel computing of the ��	(1.88, 2.81, and 3.53 with 2, 3, 

and 4 cores, respectively) and �� (1.91, 2.79, and 3.60 with 2, 3, and 4 cores) integrals. Nakato’s 

method is slightly less efficient than composite Simpson’s method in the �� integral, but its 

speedup ratio is nearly linear and again close to the ideal line. In parallel computing of the �� 
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integral, Nakato’s method performs well for 2 and 3 cores, however, the linear upward speedup 

trend reaches a plateau for 4 cores. The third best speedup for the �� integrals is the Guo and 

Julien’s method with 	1.77, 2.28, and 2.56 with 2, 3, and 4 cores. This method for the �� integrals 

‒ with one hundred points in the partial sum ‒ has a better speedup factor than Nakato’s method 

and it reaches 	1.74, 2.23, and 2.99 with 2, 3, and 4 cores.  

At this point, it is worth mentioning that distributing and mapping of data and tasks 

between the processing units impose extra overhead to the calculations; however, the overhead 

might be compensated by parallel-computing gained benefits. Apparently, any parallel algorithm 

is only efficient when the overall performance does not decrease by parallelization. In this study, 

the three explicit methods (Ronald-Zanke, Abad-García and Srivastava algorithms) do not 

become more efficient on multi-CPU as the overhead of distributing the computation dominates 

the efficiency gain by means of multi-processors. In some cases, the efficiency (even slightly) 

drops for both integrals using multi-cores. Srivastava’s method is the least efficient method to 

parallelize by the algorithm which we used in this study. For example, the efficiency of 

Srivastava’s method using 4 cores is 0.67 which is even below the single core computation. 

Figures 4a and 4b show that if we choose to perform the computation of Einstein’s integrals on 

multi-processors, Guo and Julien’s algorithm over-performs the other four existing methods. 

Additionally, sequential computing of Abad and García, Srivastava and Roland and Zanke’s 

methods are more efficient that their parallel counterpart (at least for datasets up to 10000 pairs).  

 

4.5. Summary and Conclusions 

 In this study, five existing methods for the calculation of Einstein’s integrals were 

compared over a complete range of inputs. CPU time of the methods for a similar set of 
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parameters was determined. Error was assessed in various bedload-layer thicknesses and 

different Rouse numbers. Finally, the performance of parallel implementation of those methods 

was evaluated on the MATLAB embedded parallel platform.  

 Considering all aspects, in particular the tradeoff between accuracy (below a certain 

threshold) and computational time, we recommend the series-based solution method by Guo and 

Julien (2004) for computing the �� integral with only ten first terms of the partial sum (right-hand 

side term in Eq. (7)), which is relatively fast and at the same time accurate. Guo and Julien’s 

method shows superiority for parallel computing of the �� integral. Besides Guo and Julien’s 

method, Roland and Zanke’s explicit modification of Guo and Julien’s scheme is a reasonably 

accurate method, while it is nearly an order of magnitude faster than the original Guo and 

Julien’s method. However, Roland and Zanke's method is only recommended for sequential 

processing. 

 For sequential computing of the �� integral, we recommend the Srivastava modification 

to the Guo and Julien’s method, to account for left hand side partial sum of Eq. (8). It is more 

accurate and meanwhile faster than all methods (except Abad and García and Roland and 

Zanke). Also, it is worth mentioning that the regression formula of Abad and García provides 

relatively accurate results for the �� integral in particular for high bedload-layer thicknesses.  
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Appendices of Chapter 4 

4-A. Existing methods of approximation of Einstein’s integrals 

4-A-1. Nakato's method  

Nakato (1984) separated both Einstein’s integrals into two regions: near the bedload-

reference level �� < � < %�, and the upper region �% < � < 1�, as follows: 

�� = 	 
���
� 
�

�
� �� = 	 
���

� 
&
�

� �� + 	 
���
� 
�

&
� ��      (4-3) 

�� = 	 
���
� 
�

�
� ln � �� = 	 
���

� 
&
�

� ln � �� + 	 
���
� 
�

&
� ln � ��     (4-4) 

Nakato integrated the upper region (second term on the right-hand side) numerically with 

Simpson's rule, and derived the following formulas for the part close to the bedload-layer 

thickness (first term on the right-hand side): 

	 
���
� 
� �� = *� + *� + *+&

�          (4-5a) 

in which *,s are defined as: 

*� = �
��� �%��� − �����; *� = �

��� �%��� − �����; *+ = ������
��+��� �%+�� − �+���;    (4-5b) 

When the respective formulas become singular at � = 1, � = 2, and � = 3, the following 

expressions can be used instead: 

*� = ln &
�; *� = −2ln &

�; *+ = 3ln &
�          (4-5c) 

In turn, 	 
���
� 
� ln � �� = /� + /� + /+&

�          (4-6a) 

in which /,s are defined as: 

/� = &012
��� 
ln % − �

���	
 − �012
��� 
ln � − �

���	
;  /� = �&312
��� 
ln % − �

���	
 − ��012
��� 
ln � − �

���	
; 

/+ = ������&412
��+��� 
ln % − �

+��	
 − �������412
��+��� 
ln � − �

+��	
;     (4-6b) 
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When the respective formulas become singular at	� = 1, � = 2, and � = 3, the following 

expressions can be used instead: 

/� = �
� [�ln %�� − �ln 5��]; /� = −�ln %�� + �ln5��;	/+ = +

� [�ln %�� − �ln5��]   (4-6c) 

4-A-2. Guo and Julien's method  

Guo and Julien (2004) derived closed-form, analytical solutions of the problem for 

integer values of Rouse number and for non-integer values they derived following formulas: 

����, �� = �6
789��6� − :�����2

�210 − �∑ ����<
�=��� 
 �

���

=��>=?� @     (4-7) 

����, �� =
�6

789��6� :A cot��A� − 1 − �
� + ∑ 
�= − �

�E=
>=?� @ − :Φ��� 
ln � + �
���
 + �∑ ����<

�=���
G���=�
��E=���>=?� @ (4-8) 

where Φ��� is  defined as: 

Φ��� = �����2
�210 − �∑ ����<

=�� 
 �
���


=��>=?�        (4-9) 

Guo and Julien also suggested the following closure for the first infinite series in Equation (4-8) 

of the �� integral: 

∑ 
�= − �
�E=
>=?� ≈ 63

I
�

��E��J.K0L3           (4-10) 

4-A-3. Abad and García's regression  

Abad and García (Abad et al., 2006) suggested the following formulas for Einstein’s 

integrals based on regression analysis:  

�� = �MN + M�� + M��� + M+�+ + MO�O + MP�P + MI�I���	     (4-11) 

�� = �QN + Q�� + Q��� + Q+�+ + QO�O +QP�P +QI�I���    (4-12) 

The coefficients of Equations (4-11) and (4-12) are given in Table 4-A1, based on Rouse number 

and reference bedload-layer thickness. 
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Table 4-A1: Regression coefficients for Equations (4-11) and (4-12)  

E 
CN QNS  

C� Q�S  
C� Q�S  

C+ Q+S  
CO QOS  

CP QPS  
CI QIS  

0.001 

8.0321 -26.273 -114.69 501.43 -229.51 41.94 
-2.7722 

2.5779 -12.418 47.353 17.639 -13.554 2.8392 
-0.2003 

0.005 

2.1142 -3.4502 12.491 60.345 -29.421 5.4215 
-0.3577 

1.2623 1.0330 13.543 0.7655 -1.6646 0.3803 
-0.0275 

0.01 

1.4852 0.2025 14.087 20.918 -10.91 2.034 
-0.1345 

1.1510 2.1787 7.5672 -0.2777 0.570 0.1424 
-0.0105 

0.05 

1.1038 2.6626 
5.6497 0.3822 -0.6174 0.1315 

-0.0091 

1.2574 2.3159 1.9239 -0.3558 0.0075 0.0064 
-0.0006 

0.1 

1.1266 2.6239 3.0838 -0.3636 -0.0734 0.0246 
-0.0019 

1.4952 2.2041 1.0552 -0.2372 0.0265 -0.0008 
-0.00005 

 

4-A-4. Roland and Zanke's method  

 Roland and Zanke (Abad et al., 2006) proposed the following formulas for Einstein’s 

integrals: 

����, �� = 
 �
���
	:�����2

�210 @ − 
 �
���
 T
 �

���
 :�����210
�213 @ − 
���

���
 U
 �
��+
 :�����213

�214 @ − 
���
��+
 : ���+�6

789[���+�6] − �V12
O�� @WX(4-13) 

����, �� = 
 �
���
 Tln � �����2

�210 − � Y
 �
���
 Zln � �����210

�213 − �� − 1�����, � − 3�����, � − 2�[\ + ����, ��X	 (4-14) 

They also suggested the following formulas for approximations for ����, � − 3� and ���E, z − 2�: 
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����, � − 3� = − �����6_���
`a�[��−2�A] − �412

+�� ln � + �412
�+���3      (4-15a) 

b��� = �1 − c� − ln|4 − �| + �
+�� + �

��O��� + �
�O�O���3       (4-15b) 

����, � − 2� = 
 �
���
 :�1−���−1

��−2 @ − 
�−1
�−2
 : ��−2�A

sin[��−2�A] − �3−�
3−�@           (4-16) 

4-A-5. Srivastava's method  

Srivastava (Abad et al., 2006) suggested a more accurate explicit closure which replaces 

Equation (4-10) by Guo and Julien (2004) to reduce the error: 

∑ 
�= − �
�E=
>=?� ≈ ln�1 + 1781�� − N.�+I��

��E�.�jO��3.0k       (4-17) 

Then he resolved the problem of singularity in two of the terms in the infinite series expansion. 

Srivastava introduced a change of variable as �∗ = �
��� and derived the following closed-form 

formulas for Einstein’s integrals: 

����∗, �� = − �∗012��
��� + 2.061 �∗312��

��� − 1.385 �∗3.L12��
�.I�� + N.++�m

N.ImN+E�    (4-18) 

����∗, �� = �∗012[������� n9�∗]��
�����3 − 1.903 �∗312[������� n9�∗]��

�����3 + 2.022 �∗3.L12[����.I��� n9�∗]��
��.I���3 − N.�p�O

�.IP�E�		 
            (4-19) 

4-B. Composite Simpson’s rule 

The composite Simpson rule for numerical integration is given below. This method has a 

truncation error of q�ℎO�, therefore the methods is sometime called the cubic Simpson rule 

(Press at al., 1992): 

	 s�t��t = u
+∑ vswt�x��y + 4swt�x��y + s�t�x�z

<
3x?� + uV�{�|�

�jN }~t |s�O����|{
| 			 	 �4-20�	
where	� ∈ [~, �];	ℎ = {�|

= ;	tN = ~;		t= = �;	and	tx = ~ + �ℎ.	
This	method	-	with	very	dense	mesh	-	was	used	as	benchmark	in	our	comparisons.	
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4-C. Statistics of model skill assessment 

 The following statistics are used in the paper to evaluate method results denoted by “�” 

versus a benchmark “�” (Chung et al., 2009; Zamani and Bombardelli, 2014): 

a) �a~` = �
�∑ ��, − �,��,?�          (4-21) 

Bias is a measure of over or under prediction of models. Essentially a value closer to zero for 

bias is ideal.  

b) ���� = ��
�∑ ��, − �,�,?� ��		        (4-22) 

Root mean square error (RMSE) is a common metric for numerical prediction error, which 

amplifies large errors over the computation domain. RMSE values closer to zero is ideal. 

c) �� = ����
0
�∑ �����0

            (4-23) 

Scatter index (SI) is another measure of error, which is scaled by the average value of the 

benchmark, and thus non-dimensionalized. It is worth mentioning that SI is more informative 

than RMSE index, since high (or low) values of RMSE can be misleading in cases of extremely 

high (or low) values of model results. For example in Table 1 composite Simpson’s method with 

2000 points has a RMSE of an order 10� in the approximation of J� integral, while this method is 

a reasonably accurate method. 

d) �� = 1 − ∑ ����£��3		���0∑ �����¤�3		���0
         (4-24) 

Coefficient of determination (��) is a popular statistic which quantifies goodness-of-fit between 

method’s results and benchmark data. It varies between -1 and 1, with 1 indicating excellent 

agreement.   
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e) Parallelization speedup: is a metric in evaluation of parallel computing efficiency that shows 

relative performance improvement as a task is executed on multiprocessors compared to 

single processor. 
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Figures 

 

Figure 4-1. Local relative error of five methods for the calculation of the J� Einstein integral for 

different values of bedload-layer thickness, over various Rouse numbers (Guo and Julien’s 

method with 10 terms in the partial sum of Eq. (4-7)).  
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Figure 4-2. Local relative error of five methods for the calculation of the ¥¦ Einstein integral for 

different values of bedload-layer thickness, over various Rouse numbers (Guo-Julien’s method 

with Eq. (4-10) closure for the first infinite sum and 50 terms in the second partial sum).  
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Figure 4-3. CPU time of various methods for computing Einstein’s integrals for a set of 960 pair 

values of Rouse number and bedload-layer thickness. The number after “Guo Julien” refers to 

the number of terms in the partial sum of the infinite series (left term in Equation (4-8)). 

Composite Simpson method results were obtained with 500 points. 
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Figure 4-4. Speedup for the parallelization of existing methods for the calculation of Einstein’s 

integrals (left: §¨and right: §¦ integral). In this case, Guo and Julien’s method was executed with 

Eq. (4-10) closure and the first 100 terms in the partial sum of Eq. (4-8) for computing the §¦ 

integral. It is worth mentioning that the above curves are computed for a dataset of 9000 Rouse 

numbers and bedload-layer thicknesses. 

 

  



 

 

Tables 

Table 4-1. Global accuracy of existing methods of calculation or approximation of Einstein’s integrals (tested over a data set of 960 bedload-layer 

thicknesses and Rouse numbers). 

Measure 
Abad and 

García 

Guo and 
Julien 

(N=100) 

Guo and 
Julien 
(N=50) 

Guo and 
Julien 
(N=25) 

Guo and 
Julien 
(N=10) 

Nakato 
Roland and 

Zanke 
Srivastava 

Composite 
Simpson 
(N=2000) 

Composite 
Simpson 
(N=500) 

§¨ 

Bias 2.2101E+5 7.81117E-9 7.81117E-9 7.81117E-9 7.81117E-9 4.50330E+2 -1.24235E+1 
-

1.23151E+4 
3.40689E+00 8.09726E+2 

RMSE 5.9352E+6 4.49951E-7 4.49951E-7 4.49951E-7 4.49951E-7 2.93424E+3 4.24792E+1 1.28230E+5 6.37503E+1 1.50814E+4 

Scatter 

Index 
1.7032E+0 1.37863E-13 

1.37863E-

13 

1.37863E-

13 
1.37863E-13 8.98917E-4 1.30155E-5 3.94381E-2 1.95329E-5 4.61974E-3 

©¦ 0.9956 1.00 1.00 1.00 1.00 0.9999 1.00 0.9999 1.00 0.9998 

§¦ 

Bias -1.3602E+5 -6.0262E+4 -6.0262E+4 -6.0261E+4 -6.02612E+4 -1.5019E+3 -3.38259E+10 1.1046E+3 -1.70948E+1 -4.04983E+3 

RMSE 1.1242E+7 7.1140E+5 7.1140E+5 7.1140E+5 7.11400E+5 1.1345E+4 7.16365E+11 2.4658E+4 3.21416E+2 7.57938E+4 

Scatter 

Index 
-8.0043E-1 -5.0921E-2 -5.0922E-2 -5.0922E-2 -5.09226E-2 -8.1554E-4 -2.11693E+1 -1.7728E-3 -2.31069E-5 -5.44731E-3 

©¦ 0.9978 0.9999 0.9999 0.9999 0.9999 0.9999 0.9246 0.9999 0.9999 0.9999 

 

  

1
2
6
 



 

 

Table 4-2. Accuracy of the partial sum in the �� convergent series approximations with various number of terms (in %). 

Approximation 

Guo & Julien 

explicit 

closure 

(Eq. (4-10)) 

Srivastava 

explicit 

closure 

(Eq. (4-17)) 

Partial sum 

with 10 

terms* 

Partial 

sum with 

20 terms* 

Partial 

sum with 

50 terms* 

Partial 

sum with 

100 terms* 

Partial sum 

with 200 

terms* 

Error % 

ª = «. ¬ 0.240178 0.047984 7.574728 3.925805 1.605325 0.808652 0.405838 

ª = ¨. ¬ 0.232877 0.005490 10.422207 5.514373 2.286010 1.157081 0.582129 

ª = ¦. ¬ 0.225064 0.013587 12.702128 6.846634 2.875378 1.462238 0.737437 

ª = ­. ¬ 0.279809 0.021046 14.623828 8.016032 3.408224 1.741168 0.880210 

ª = ®. ¬ 0.228926 0.023806 16.290325 9.067205 3.900604 2.001648 1.014284 

* Note: number of terms in the partial sum of the left term in Eq. (4-8).  

1
2
7
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Chapter 5: Novel Methods to Calculate Sediment Volumetric Flow 

Rate with Einstein’s Integrals: Semi-Analytical and Numerical 

Approaches 

5.1. Introduction 

 The main objective in the assessment of erosion and sedimentation processes in coastal 

areas, and in river restoration projects, is the computation of the total sediment volumetric flow 

rate. Those rates can be later used for the computation of changes in bed levels, in order to 

determine the size of scour holes or the amount of the deposited sediment (see García, 2008; 

Bombardelli and Moreno, 2012). There are numerous methods to account for total sediment 

transport in a streamflow; however, they all fall in three main categories. The simplest approach 

consists in using empirical equations based on the measurement and statistical regression such as 

Brownlie (1981), and Karim and Kennedy (1983). The second common approach is one in which 

energy principle is utilized between the rate of work done on the sediment particles in turbulent 

flow and the rate of energy expenditure. Bagnold (1966), Engelund and Hansen (1972), Yang 

(1973), and Ackers and White (1973) methods are in this second category. Finally there are 

formulations based on the conservation of mass, such as methods by Einstein (1950), Colby 

(1964), and Simons, Li and Fullerton (1981). Among those three categories, some of them 

consider different particle sizes, e.g., Einstein, (1950) and Toffaleti, (1968); whereas others only 

account for total sediment discharge, e.g., methods by Engelund and Hansen (1972) or Meyer-

Peter and Muller (1948).  

 Einstein’s method is one of the cornerstones of theoretical sediment mechanics (Einstein, 

1950) because it allows for the computation of those sediment volumetric flow rates via balance 
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laws. The method is obtained after integration of Rouse concentration distribution and the 

product of that distribution and the law of the wall, over depth (Julien, 2002; García, 2008). The 

first and second Einstein’s integrals (without considering multiplier coefficients) are 

consequently defined as: 

��(�, �) = 	 
���� 
� ���
�           (5-1) 

��(�, �) = 	 
���� 
� �� �(�) ��,�
�         (5-2) 

where � is the relative bedload-layer thickness, �	is the dimensionless distance from the bed, and 

� is the Rouse number. Relative bedload-layer thickness is defined as � = �
� where � denotes a 

location above the bed (usually – in absence of bedforms – � = 2��	[�] in which �� is particle 

diameter); �	[�] is the water depth;	� ∈ (10�#, 10��) $%%& Guo and Julien (Abad, et al. 2006; 

García, 2008); � ∈ (�, 1)	$%%&. In turn, the Rouse dimensionless number is defined as � = '(
)*+∗, 

where -� 	$%.& is the particle settling velocity, /	[−] is a measure of the turbulent Schmidt number 

(ratio of sediment diffusion coefficient to kinematic eddy viscosity), 1	[−] is von Kármán 

constant and 2∗ 	$%.& is the shear velocity. In the above integrals � ∈ (0.1, 6), as Rouse numbers 

larger than six correspond to little or no motion of particles (Julien, 2002; Vanoni, 2006; García, 

2008; Bombardelli and Jha, 2009) and Rouse numbers below 0.1 is considered as washload 

(Julien, 2002; Vanoni, 2006; García, 2008). The above-mentioned integrals need to be solved 

either in each time step or sub-stepping cycle of 1-D and 2-D depth-averaged sediment-transport 

numerical packages for each particle size class (Zamani et al., 2016). 

 The above-mentioned integrals do not have closed-form analytical solution in terms of 

elementary functions, except for integer values of � (Table 5-A1 in Appendix). Although from 
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the continuum mechanics viewpoint the derivation of Einstein’s integrals is more robust as 

compared to two other treatments of the same problem – empirical formulas and equations based 

on conservation of energy (Guo and Julien 2004; Vanoni, 2006; Shah-Fairbank et al., 2011). 

Einstein method is not widely used in sediment-transport software as computing of the �� and �� 

integrals is challenging (Shah-Fairbank et al., 2011). For example the HEC package does not 

include Einstein’s method for computing sediment discharge (U.S. Army Corps of Engineers, 

2010), while it uses a simplified version of this method suggested by Toffaleti (1968).  

 To include Einstein method in sediment transport packages, several methods have been 

used to calculate �� and �� integrals, from retrieving values from a pre-calculated monograms 

(Einstein 1950; Vanoni, 2006), to regression-based formula (Abad and García in Abad et al. 

2006; García, 2008); to closed-form solution based on beta function (Guo and Wood, 1995); to 

series-based solution (Guo and Julien, 2004; Roland and Zanke, (Abad et al., 2006); Srivastava, 

(Abad et al., 2006)); and to numerical integration (Nakato, 1984). The work of Zamani et al. 

(2016) on the former methods of computing Einstein integrals revealed that there were issues of 

zones of slow convergence, local singularity, and dissimilarity of convergence and asymptotic 

behavior of infinite series that have been overlooked in some of the above-mentioned studies.  

Figure 5-1 shows a section-view schematic of riverine sediment and velocity distribution 

in depth. Sediment particles above bedload-layer thickness	(5 < ℎ ≤ �) are treated as 

suspended load and particles rolling, sliding or saltating below that level (0 < ℎ ≤ 5) are known 

as bedload. The distribution of suspended sediment in depth is governed trough the Rouse 

concentration profile. Based on Rousean distribution, Einstein, in his classic 1950 monograph, 

assumed von Karman-Prandtl logarithmic law for velocity and derived the total sediments 

discharge solely based on balance laws: 
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9: = ∑ 	9:<�=�>	=           (5-3) 

9:< = 9�< + 9�< = 9�< + 	 @(ℎ)A=(ℎ)�ℎ�
B<         (5-4a) 

9:< = 9�< + 	 AC< +∗* $��DD B<
��B<&

�< ��� EFD
G(<

�ℎ�
B< = 9�< H1 + ��= ��� IEF�G(< J + ��=K F.��LB<M<NO(��B<)M   (5-4b) 

in which 9:< 	$ P.%Q&	is the sediment discharge of size class R, AC 	$P%S& is sediment concentration at 

the bedload-layer reference level 5 (Figure 5-1), @(ℎ)	$%.& is channel-wise velocity as a function 

of depth ℎ	[�], A(ℎ)	$P%S& is concentration of sediment in depth ℎ, subscript R refers to sediment 

size class, and the rest of parameters are defined beforehand.  

 Once the total sediment-transport load computed – via Einstein’s method – those values 

can be used for the solution of Exner equation in 1-D, 2-D, and quasi-2D sediment-transport 

codes (García, 2008). Although Einstein method is the most advanced in terms of theoretical 

rigor (Guo and Julien, 2004; García, 2008; Zamani et al. 2016), it is not implemented in common 

engineering sediment transport packages until recently (for example: Abad et al. 2008; Shah-

Fairbank et al., 2011), whereas energy-based methods such as the ones suggested by Ackers and 

White (1973) and Yang (1973) have been commonly used in sediment-transport packages for 

decades (García, 2008). 

 This paper devises and tests four new methods for calculation of the Einstein’s integrals. 

First, in the next section, we employ a Gauss-Kronrod adaptive integration technique for 

Einstein’s integrals. Second, we provide a numerical trick to increase the efficiency of Einstein’s 

integrals via recycling computed values from numerical integrational of one integral and using it 

in another. Third, in section three, we use asymptotic series to approximate Einstein’s integrals. 

In section four we assess semi-analytical solutions based on special-functions for tackling 

Einstein’s integrals. In section five we discuss the efficiency of those methods in parallel 
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computing, and we finish the paper with discussion of the results and conclusions in sections six 

and seven. 

 

5.2. New Numerical Schemes for Integration of TU and TV 

 Among the existing methods for the Einstein’s integrals, there are not many numerical 

solutions of the Einstein's integrals except Nakato (1984), who used the Simpson’s integration 

rule. Zamani et al. (2016) stated that even with 1000 points, the error of composite Simpson’s 

rule is still significant as their detailed analysis reveals that with composite Simpson rule, the 

leading order of error scales with the product of the fourth power of discretization size and 

gradient of integrand function (Press et al., 1992; Zamani et al., 2016). We delved in to the 

methods of improvement the numerical integration procedure for the problems. In that line, 

plotting the �� and �� integrands versus depth on semi-logarithmic scale as in Figure 5-2, reveals 

that sharp changes happen near the bed. Nakato (1984) recognized and devised his solution 

method according to this fact. The issue of sharp gradients is however more serious for coarser 

sediment particles, as changes can be as high as eight orders of magnitude in Rouse numbers 

close to 5. That explains why the accuracy of classical numerical integration methods (such as 

composite Simpson) for equally-spaced abscissae was slowly increased with adding to the 

number of discretization points. To overcome the shortcoming of those integration methods we 

resort to “adaptive quadrature” method for integration, to locally refine the mesh size as needed.  

5.2.1 Gauss-Kronrod quadrature  

 In general, adaptive numerical integration refers to procedures of numerical 

approximation of an integral to a pre-specified precision by “adaptively” refining the integration 
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intervals. There are several methods for adaptive integration (see Gonnet, 2012); the pseudo-

code of most commonly used one – which we employed in this study – is given below: 

Algorithm 5-1: Recursive adaptive integration of function 

W(X) with tolerance YF on [a, b] 
integrate (W, 5, �, YF) 
1: \][5, �] ≈ 	 W(X)�X�

B  

2: Y ≈ _\][5, �] − 	 W(X)�X�
B _	 

3: if Y ≤ YF	 
                return \][5, �] 
   else 

               ` ← Bb�
�  

               return integrate (f, a,m, YF) +	integrate (f,m, b, YF) 
   end if 

  

In algorithm 5-1, \][5, �] refers to an approximation of the integral of function W(X) with a 

numerical method over e points from the lower limit 5 to upper limit �. Y is the global measure 

of error in the method that might be calculated with linear or nonlinear combination of function 

values in the integral. In turn, YF is the pre-defined tolerance for global error in numerical 

integration.  

 Gauss quadrature is an extension of Newton-Cotes type of numerical integration to non-

equally-spaced points in order to obtain higher accuracy with evaluation of the integrand 

function on identical number of points (Press et al., 1992). The quadrature rule for approximation 

of integration of function W(X) on X ∈ [5, �] is stated as: 

\][5, �] = 	 W(X)�X ≈ ��B
� ∑ -=W I�� f(� − 5)g= + 5 + �hJ]=i�

�
B         (5-5) 

where -= is the weight function corresponding to the abscissa g= on the interval g ∈ [−1, 1] 
which is the transformation of the original integration interval X ∈ [5, �] chosen based on 

Legendre polynomials.  
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 Motivated by an analogous idea as the Runge-Kutta-Fehlberg method for numerical 

integration of ODEs (e.g. Press et al., 1992), Piessens et al. (1983) suggested embedded linear 

error estimation based on the difference between two numerical approximations with quadrature 

of degrees e� (Gauss points) and e� = 2e� + 1 (Kronrod points) as follows: 

Y~k\]O[5, �] − \]Q[5, �]k          (5-6) 

Herein, abscissae are chosen such that the Gauss points are incorporated in the Kronrod points; 

consequently, QmO[a, b] and QmQ[a, b] are calculated with only e� evaluations of the integrand 

function W(X). Specifically a local error estimation based on the work by Piessens et al. (1983) 

was used:  

Y = `Re n1, f200k\]O[5, �] − \]Q[5, �]kh
S
Qo       (5-7) 

 It is worth mentioning that our method was adapted from the algorithm of QUADPACK 

mathematical library (Piessens et al., 1983). Quadrature’s abscissae and weight factors for 

QmOand QmQwhich were employed in this work 	are provided in Table 5-A2 (Appendix). Figure 

5-3 shows the Einstein’s integrals which were calculated by Gauss-Kronrod method with	e� =
7	, e� = 15, and YF = 10�L, other runs with lower global error tolerance level were conducted 

and the results are exactly similar. The computational time of this method is very small, and it is 

comparable with series-based methods (Guo and Julien, 2004; Zamani et al., 2016); however, in 

the GK quadrature method’s accuracy can be pre-defined as opposed to the existing methods of 

calculation of the Einstein’s integral. 

5.2.2. Expedite calculation via recycling the evaluated integrand 

 As may be readily noticed, integrands in Eqs (5-1) and (5-2) are rather similar, with �� 

having an extra factor, ��� �, compared to	��. In this section, we explore the possibility of taking 
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advantage of the similarity between the two integrands in order to arrive at a method that 

accelerates the computational procedure. Since significant computational burden of any 

numerical integration method – regardless of being varying or fixed abscissae – is always the 

evolution of the integrand (Press et al., 1992), we recycle the values of the integrand function 

evaluations in the computation of one integral, and reuse it for the calculation of the second 

integral, to save computational time. This numerical trick was implemented for both composite 

Simpson’s rule and GK quadrature. 

 A comprehensive dataset of 32 Rouse numbers and 30 bedload-layer thicknesses was 

used to evaluate the speedup efficiency with the retrieving integrand function numerical method. 

Table 5-1 shows the relative savings in CPU time after implementation of the above-mentioned 

integrand-retrieving trick compared to the computation via the original composite Simpson and 

Gauss-Kronrod numerical integrations. The integrand retrieving procedure, in fixed-abscissae 

methods (e.g. composite Simpson), only boils down to a single extra vector operation, which is 

computationally very affordable. However, in varying-abscissae methods (e.g. Gauss-Kronrod 

quadrature), the method has to compensate for additional overhead operations to keep the record 

of the varying bases of integration.  

 As Table 5-1 demonstrates, in the case of retrieving the integrand function of �� to 

calculate �� with composite Simpson rule, we would save 13-26% of the calculation time. In the 

case of retrieving the integrand function of �� to calculate �� with composite Simpson rule we 

have a welcomed improved efficiency (29-35%).  

 It is worth mentioning that the similar technique was implemented for the Gauss-Kronrod 

adaptive quadrature; however, the results were not satisfactory. The reason is as follows: In the 

first case – recycling �� results for calculation the �� integral – although there was a slight 



136 
 

improvement in the computational time (approximately 6%), the calculated results did not meet 

the predefined accuracy YF. And in the other case, employing �� values for calculation �� integral 

with GK 7-15 quadrature method, the computational overhead of book-keeping of varying 

Gauss-points’ not only counter balance the saved time due to vectorized multiplication of 

“��� �” values, but also surpasses the initial time of calculation of the integrand from scratch. 

Therefore, we simply conclude for the Einstein’s integrals, in the case of Gauss Kronrod 7-15 

method, the integrand function retrieving technique is not useful for efficiency improvement.  

5.3. Approximation via Asymptotic Expansion  

 Perturbation techniques and asymptotic series are approximate mathematical-physics 

methods to find a local estimation of solution in the absence of exact solution in terms of 

familiar functions (Bender and Orszag, 1999). There have been several attempts to use 

perturbation theory techniques to approximate Einstein’s integrals in the past. Nakato (1984) 

utilized integration by parts to derive an expansion of the sharp-varying part of Einstein’s 

integrals; however, he did not conduct his mathematical analysis for the entire integration region. 

Later on, an elementary expansion of the �� integrand was tried by Guo and Wood (1995), 

however, the range of Rouse numbers they used did not cover the entire physical spectrum. Also 

such authors neglected the bedload-layer thickness in their integral’s degeneration via 

elementary expansion. Given those restrictions, in this section we present an appropriate series 

approximation for Einstein’s integrals using the virtue of perturbation theory. We wanted to find 

an asymptotic series which is convergent for a wide range of bedload-layer thicknesses and 

Rouse numbers. For the sake of the physical point of view, we assume perturbation quantities 

(�, �) are real and positive.  
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 We explored the Maclaurin series expansion of the ��and �� integrals considering 

different truncation points, i.e. one term, two terms, …, five terms (Bender and Orszag, 1999). 

Near-bed expansion of Einstein’s integrals – up to six terms – is given in the Appendix A4. 

Figures 5-4 and 5-5 show the percentage of the series approximations’ error compared to a 

machine precision accurate result, which is obtained with GK quadrature with YF = 10��r, 

computed by series expansion of the �� and �� integrals, for four different bedload-layer 

thicknesses over the feasible range of Rouse numbers (0.1 < � < 6). It can be seen that none of 

the expansions provide acceptable results for � < 2.5. Still, in the case of 2.5 < � with only two-

term-truncated series, accurate results are obtainable with error below one percent. Also both 

Figures 5-4 and 5-5 show the error generally rises as bedload-layer thickness is increased. 

Furthermore, a closer look at those figures indicates that there is not a substantial increase in 

accuracy for expansions with more than two terms. Therefore, based on the error analysis for 

different number of terms in the expansion, we suggest the following formula for approximation 

of Einstein’s integrals: 

��(�, �) ≈ s
−1 + �
�


� $− �
��b� + ��Q

(��b�)(��b�)&t�i�
�i� + u(�E)     (5-8) 

��(�, �) ≈ s
−1 + �
�


� $(��bvwx��� vwx�)�(��b�)Q + f�E�b��Qb�� vwx��E�Q vwx�	b�S 	 vwx�h�Q
(��b�)Q(��b�)Q t�i�

�i� + u(�E) (5-9) 

Notice that both Einstein’s integrals have closed-form analytical solution in integer Rouse 

numbers so the problem of singularity in integer � values in Eqs. (5-8) and (5-9) can be avoided 

(Table 5-A1 in Appendix).  

 Figure 5-6 shows the values of �� and �� integrals which are computed by two-term series 

expansion of the corresponding integral, Eqs. (5-8) and (5-9). As mentioned above, in both cases 

the values are acceptable in the Rouse numbers corresponding to coarse particles. 



138 
 

5.4. Semi-Analytical Solution by Hypergeometric Functions  

 Apart from various mathematical applications, hypergeometric special functions have 

been widely utilized in applied physics (Slater, 1966). Generalized hypergeometric function 

“ Fz{ ” is defined as (Abramowitz and Stegun, 1965; Zwillinger, 2014): 

F|f5�, … , 5~; ��, … , �|; Xh = ∑ (BO)�…fB�h�
(�O)�…f��h�

�]iF
��
]! 	{       (5-10a) 

in which 5=, �= , X ∈ 	ℂ (complex variables), and the radius of convergence is |X| < 1. In Eq. (5-

10a) f5~h] refers to the notation of Pochhammer symbol, which is defined as (Slater, 1966; 

Zhang and Jin, 1996):  

f5~h] = 5~f5~ + 1h… (5~ + e − 1)        (5-10b) 

 Among hypergeometric functions, F��  is known as Gauss hypergeometric function and it 

appears widely in mathematical physics (Zwillinger, 2014). Gauss hypergeometric function is 

defined as: 

F�� (5, �; A; X) = 1 + B�
�×� X + B(Bb�)�(�b�)

�(�b�)×�×� X� + B(Bb�)(Bb�)�(�b�)(�b�)
�(�b�)×�×�×E XE +⋯  (5-11) 

As it has been stated by A.R. Kacimov (Abad et al., 2006), an alternative approach to tackle 

Einstein’s integrals is through hypergeometric functions. The analytical solutions of the ��and �� 

integrals in terms of hypergeometric functions are as follows (solution can be obtained by Maple 

and MATHEMATICA): 

J� = 	
���� 
� dy = �ONM
��� F12 (1 − �,−�; 2 − �; �)        (5-12) 

J� = 	
���� 
� log � dy =  

− �ONM
(���)Q �� F�E (1 − �, 1 − �, 1 − �; 2 − �, 2 − �; �) + (� − 1)(log � − 1) F�� (1 − �,−�, ; 2 − �; �)�  

            (5-13) 
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 Although those analytical solutions seem like a great step forward, the above special 

functions need numerical evaluation. Thus we prefer to name Eqs. (5-12) and (5-13) “semi-

analytical” solutions of Einstein’s integrals. There are still some difficulties: methods for 

numerically evaluating hypergeometric functions are not highly advanced to date (Zhang and Jin, 

1996), with exception of Confluent f F�� h and Gauss f F�� h hypergeometric functions, since 

those functions have commonly appeared in computational physics (Slater, 1966; Zhang and Jin, 

1996). In addition, those numerical methods are not always stable, even if they are employed in 

convergence range of parameters of the function (Zhang and Jin, 1996; Michel and Stoitsov, 

2008; Pearson et al., 2014). The final drawback of using hypergeometric functions is that those 

numerical methods are generally too slow, unless they were specifically designed/manipulated 

with prior information about the parameters and argument (Zhang and Jin, 1996; Pearson et al., 

2014). 

 

5.4.1. Manipulation of the hypergeometric function solution 

First consider the fact that value of any hypergeometric function – regardless of its 

parameters – are equal to one when its argument is zero: 

F|f5�, … , 5~; ��, … , �|; 0h = 1	{          (5-14) 

Therefore, we take advantage of this property and reform the Einstein’s integrals with 

elementary algebra to transform one of the limits to zero, to reduce the computational cost by a 

factor of two. We introduce the change of variable g = 1 − � in Eqs. (5-1) and (5-2) and rework 

those equations:  

�� = 	 
 :
��:


� �g���
F           (5-15) 
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�� = 	 
 :
��:


� ���(1 − g) �g���
F          (5-16) 

Eq. (15) has a closed-form analytical solution based on the Gauss hypergeometric function: 

��(�, �) = (���)M�O
�b� ��(�, � + 1; � + 2; 1 − �)�       (5-17) 

 In turn, as two times numerical evaluation of F�E  in Eq. (5-13) is computationally 

expensive , we resort to perturbation theory to rework Eq. (5-16) into a more convenient form. 

Since 0 < g < 1 − �, we can expand log(1 − g) around zero: 

log(1 − g) = −g − :Q
� − :S

E − :�
r −⋯	        (5-18) 

Then Eq. (5-16) becomes: 

J� = 	 
 �
���


� 
−g − :Q
� − :S

E − :�
r −⋯
dt���

F        (5-19) 

which leads us to a series-based analytical solution as: 

��(�, �) = −∑ 
(���)O���M](�b]b�) ��(�, � + e + 1; � + e + 2; 1 − �)� 
	�]i�    (5-20) 

For two reasons the right hand side infinite series of Eq. (5-20) demonstrates an 

asymptotic behavior. Firstly, as both �	and e are positive numbers and � < � + e + 2 and 

� + e + 1 < � + e + 2, we can conclude that as e becomes large, the Gauss hypergeometric 

function in the Eq. (5-20) can be approximated by considering only the first ` terms of the series 

with truncation error of u I
 �
�b]b�


�(�b�)J, (see Abramowitz and Stegun, 1965; page 565, 

equation 15.7.1). Secondly, given that � = 1 − � < 1, as e	increases, the coefficient 
(���)O���M
](�b]b�)  

could be scaled with 
C�
]Q, which rapidly approaches toward zero. Therefore, it is safe to assume 

Eq. (5-20) shows an asymptotic behavior and to consider its partial sum instead of the infinite 

series. Still, we expect slow convergence for coarse particles. 
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5.4.2. Approximation based on hypergeometric function 

At this point, we have to find a numerical scheme to evaluate Gauss hypergeometric 

function with real values of parameters and argument to use Eqs. (5-17) and (5-20) for our 

problem. The Appendix A.5 will provide two numerical methods to that end. The third numerical 

method we used in this paper for computing Einstein’s integrals through Eq. (5-17) and (5-20) 

was a subroutine which was developed by Jin (2015) from a numerical computation library of 

special functions.  

 Figure (5-7) shows Einstein’s integrals which are calculated via formula of Eqs. (5-17) 

and (5-20) and Taylor series expansion of Eq. (5-A7). Figure (5-8) shows Einstein’s integrals 

which are calculated via formula of Eqs. (5-17) and (5-20) and the hypergeometric function 

special solver by Jin (2015). As seen, both methods have excellent agreement with the results of 

composite Simpson method with dense mesh (10000 nodes) in the case of high bedload-layer 

thickness; however, the accuracy of the results is reduced when it comes to smaller values of �. 

The �� integral results error is relatively larger compered to �� integral.  

 Quantitative comparisons of those semi-analytical methods and all other methods which 

we developed in this paper are given in Table 5-2. That is to mention the statistics of Table 5-2 

are computed for a dataset of 960 pairs (32 Rouse numbers and 30 bedload-layer thicknesses) to 

uncover any local/global flaws in the methods. In Table 5-2, columns six to eight display the 

metrics that account for both composite Simpson’s methods of recycling �� integration values 

from �� and vice-versa.  
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5.5. Efficiency of Parallelization of New Algorithms 

 Given that in real rivers and estuaries there are various particle sizes, an “ideal” sediment-

transport packages has to carry out the functionality of simulating multi-fraction of particles to 

reproduce non-uniformity in the particle sizes in nature (Khosronejad et al., 2011; Keshtpoor et 

al., 2015; Zamani et al., 2016). Thus, we consider employing parallel computation of Einstein’s 

integrals. In this study we used shared-memory simulation for distributing computation based on 

particle size on different computational cores.  

 We employ the PCT toolbox of MATLAB to execute computations on a multicores 

desktop (MathWorks, 2015). Among various opinions, we used parfor loops for parallelism to 

distribute grain sizes computations on multi-processors. A machine with Intel i7-2670QM, four-

core processor and 8 GB memory was used to benchmark the parallel efficiency of the new 

methods. In this study, we run a dataset of 10,000 pairs of (�, �) on one, two, three and four 

CPUs and assessed computational time improvement on multi-core, compared with the 

sequential run of same dataset on a single CPU. Table 5-3 shows the rate of efficiency 

improvement via parallel computing of GK-quadrature, recycling method with composite 

Simpson’s rule and Maclaurin series expansion. It is worth to mention here that, we did not 

consider the methods based on Gauss hypergeometric functions for parallel computing, due to 

their enormous computational burden and relative low accuracy.  

 Table 5-3 shows the efficiency of adaptive Gauss-Kronrod, composite Simpson and 

series expansion on parallel platforms. It can be noticed that although series expansion is very 

efficient in sequential computing, it not only does not become more efficient in parallel 

computing, but also it performs less efficiently due to the overhead of distributing over 

multicores. The efficiency of series based method remains almost the same for two cores and 
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thereafter it reduces as number of cores increases to three and four. The other two methods – GK 

quadrature and composite Simpson – both perform well in parallelization as both have linear 

speedup as the number of cores increases. Still, composite Simpson integration to some extent 

over-performs in parallelization compared to adaptive GK quadrature. 

 

5.6. Discussion of New Methods 

The four new approaches were tested against a full dataset of all feasible Rouse numbers 

and bedload-layer reference depths. Figure 5-9 shows the comparison of computation time of 

different methods which are benchmarked on a machine with Intel® Core™ i7-2670QM 

Processor and 8 GB of RAM. Considering the statistical measures of goodness-of-fit, which are 

given in Table 5-2 and computational time of methods – Figure 5-9 – we can extract the 

following lessons.  

Maclaurin series expansion of Einstein’s integrals – Eqs. (5-8) and (5-9) – is the fastest 

method. The speed of this method is well comparable to explicit methods by Abad-García, 

Roland-Zanke, and Srivastava (Zamani et al., 2016). Series expansion method has relatively 

accurate results for Rouse numbers higher than 2.5, in particular this method provides close to 

exact values for the �� integral in high Rouse numbers. In the �� integral series expansion 

including more than the first two terms would not reduce the error. Similarly, in the �� integral’s 

series expansion best accuracy is reached with two terms. In addition, Figures 5-4 and 5-5 shows 

that those series expansions tend to provide more accurate results in lower bedload-layer 

thicknesses (which is intuitive since the expansion was performed about the bed). It is relevant to 

mention that the statistical measures of error in series expansion of �� integrals is better than 

composite Simpson method with 2000 nodes or GK 7-15 with YF = 10�L (Table 5-2). Also 
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Table 5-2 shows that computation of �� integral with two-term series expansion is comparable 

with composite Simpson’s method in measures of error, while this series expansion is executed 

orders of magnitude faster than the composite Simpson’s method.  

Besides series expansions, we used a numerical trick to increase the efficiency of 

numerical integration via saving the evaluated integrand function of one of the Einstein’s 

integrals and recycle it for the second one. This technique did not improve computation time in 

the GK quadrature due to the extra overhead prompted by book-keeping of changing integration 

nodes. Conversely, this technique was very fruitful for fixed abscissae integration methods 

(composite Simpson rule). In retrieving the �� integral from �� integral values via vectorized 

dividing, we gained ~25% speedup without any compromising in accuracy (Table 5-1). The 

second case, retrieving �� integral from ��values via vectore multiplication, yielded even better 

results, it saves ~30 − 35% of computing time. It is worth mentioning that composite Simpson 

rule is not the best method for Einstein’s integrals due to sharply varying nature of the integrand 

functions. The results of composite Simpson integration with 2000 node was still less accurate 

than GK quadrature with Y = 10�L, while it took 50% more CPU time (Table 5-2 and Figure 5-

9). Our further investigation revealed with 6000 nodes, composite Simpson rule would be able to 

produce the accuracy of adaptive GK quadrature with error tolerance of YF = 10�L, which 

proves superiority of adaptive integration method in comparison with fixed-abscissa methods.  

The third new method we used herein was adaptive Gauss-Kronrod quadrature. This 

method has an inner accuracy-based switch which locally refines the discretization size to meet 

pre-defined tolerable error. Due to the nature of Einstein’s integrals this method provided very 

accurate results, way more accurate than other methods (Table 5-2). In computing ��integrals, 

GK quadrature results’ RMSE were nine orders of magnitude less than composite Simpson’s 
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method, with same execution time (GK with YF = 10�L and composite Simpson with � =
1000). The similar comparison for �� integral shows that composite Simpson with � = 1000 

had five orders of magnitude larger RMSE than GK quadrature. 

Finally, based on the former statements of Kacimov and Guo-Julien (Abad et al., 2006), 

we tried to numerically evaluate the analytical solutions of Einstein’s integrals which are in the 

form of hypergeometric special functions. We reorganized the integral limits via change of the 

variable to reduce the computational costs. Then we used three different methods; Eqs. (5-A6) 

and (5-A7), and a library of special functions by Jin (2015). Those methods had stability 

problems in particular in cases of low bedload-layer thicknesses. The solution with Gauss 

hypergeometric function took too many terms to converge and in some cases the truncated series 

has a large error compared to the machine precision result. We also tried the use embedded 

hypergeometric solvers of MATLAB and MATHEMATICA packages; however, those solvers 

were extremely slow for our purpose. Therefore, we tend to believe semi-analytical solutions 

with hypergeometric functions should not be used for computation of Einstein’s integrals, unless 

a robust and fast algorithm for real-value parameters is devised.  

As a final point, we studied the performance of GK quadrature, composite Simpson’s rule 

and series-based expansion in parallel processing. The best efficiency was reached by composite 

Simpson rule which approximately obtained 1.94, 2.86, and 3.70 for 2, 3, and 4 cores. The 

speedup factor of adaptive Gauss-Kronrod method was slightly lower than the composite 

Simpson’s method with ~1.93, 2.74, 3.44 for 2, 3, and 4 cores respectively. On the other hand, 

while asymptotic series expansion runs very fast in sequential processing, its overhead of 

distribution over multiprocessors is high. Thus the parallelization of asymptotic series expansion 
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of the Einstein’s integrals reduces the computational speed. Next section recaps all of our 

investigations about new efficient algorithms for calculation of Einstein’s integrals. 

 

5.7. Summary and Conclusions 

 This paper devised four new methods for approximation of the �� and �� integrals. The 

first method we used was mesh-adaptive numerical integration with Gauss-Kronrod quadrature 

rule. Then we employed a numerical technique to retrieve one of the Einstein’s integrals from the 

recycling of already computed values in the second one, to abridge the computational time. This 

method was effective with the composite Simpson integration technique; however, application of 

similar strategy for GK quadrature was not satisfactory. Later on, we employed a Maclaurin 

series expansion to find a fast, asymptotic series-based solution for Einstein’s integrals. Results 

were astonishingly fast and accurate for heavy particles, but the error for smaller particles was 

significant. At the end, we investigated various hypergeometric solvers to approximate Einstein’s 

integrals via semi-analytical solutions based on hypergeometric functions. The results were very 

slow (and in some cases inaccurate) especially for finer particles and low values of �. All newly 

developed methods have been rigorously validated with statistical metrics of validation over a 

full dataset of admissible Rouse numbers and bedload-layer thicknesses. 

 All in all, we first suggest Gauss Kronrod adaptive integration as it is fast and efficient in 

parallelization. In addition, as global error in this method is set by the user and never exceeds the 

pre-defined values, the accuracy of this method is completely controlled. This method is a 

perfect tool for the higher accuracy with affordable computational time which is well comparable 

to Guo and Julien’s (Guo and Julien, 2004) method with 50 terms. In addition, GK method has a 

linear speedup which is slightly below to ideal, for multiprocessor computing. The second 
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possibility is using GK quadrature for finer particles (� < 2.5) and change gear to Maclaurin 

series expansion with two first terms for the �� and �� integrals for coarser particles (2.5 < �). 

Then we can take advantage of high speed of series expansion without compromising the 

accuracy. As the methods we developed in this paper were comprehensively verified via various 

model skill assessment metrics, implementation of them in a sediment-transport package and 

validation against real-world measured data would be the future path of this research. 
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Appendices of Chapter 5  

5-A. Analytical solutions of Einstein’s integrals in integer Rouse numbers 

Table 5-A1. Analytical solutions of Einstein’s integrals in integer Rouse numbers. 

Rouse 

number 

��(E) ��(E) 

� = 1 −1 + E − log � 1 − � + � ��� � − ���� �
2  

� = 2 1
� − � + 2 ��� � −2 + 1

� + � + ��� �
� − � ��� � + ���� � 

� = 3 3
2 +

1
2�� −

3
� + E − 3 ��� � 

15
4 + 1 − 12� − 4�E + 2(1 − 6� + 2�E) ��� � − 6�� ���� �

4��  

� = 4 −103 + 1
3�E −

2
�� +

6
� − �

+ 4 ��� � 

−559 + 1
9�E −

1
�� +

6
� + � + 2 ���� � 

−(−1 + 6� − 18�� + 3�r)
3�E ��� � 

� = 5 65
12 +

1
4�r −

5
3�� +

5
�� 

−10� + � − 5 ��� � 

1295
144 + 9 − 80� + 360�� − 1440EE − 144�# − 360�r ���� �

144�r  

+12(3 − 20� + 60��� − 120�E + 12�#)
144�r ��� � 

� = 6 −7710 +
1
5�# −

3
2�r +

5
�E 

−10�� +
15
� − � + 6 ��� � 

−7399600 + 1
25	�# −

3
8	�r +

5
	3	�E −

5
�� 		+

15
� 	+ 	�

− (−2 + 15� − 50E + 100�E − 150�r + 10�L)
10�# ��� � + 3 log� � 

 

5-B. Quantitative measures of method adequacy 

 Four common indices of model skill assessment are used in this study to provide 

quantitative bases for comparison of various methods of computation/approximation of 

Einstein’s integrals. Bias (equation 5-A1) is a measure to define over/under prediction of a 

method. Root Mean Square of Error (RMSE) is a measure of misfit (equation 5-A2). In turn, 
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Scatter Index (SI) is a dimensionless measure of misfit of model and benchmark values (equation 

5-A3). Finally, Coefficient of Determination “R�” (equation 5-A4) is a widely used statistics to 

depict how close the model fitted the benchmark values (Zamani and Bombardelli, 2014).   

Bias ≔ �
§∑ (M© − B©)§©i�               (5-A1) 

RMSE ≔ «1
N∑ (Mi − BiNi=1 )2		          (5-A2) 

SI ≔ «O
®∑ (¯°�±°®°²O )Q	

O
®∑ ¯°®°²O

            (5-A3) 

R� ≔ 1− ∑ (¯°�±°)Q		®°²O
∑ (¯°� ³̄ )Q		®°²O

           (5-A4) 

In which, M	denotes model results, B referrers to benchmark values, and � is the number of 

observations. 
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5-C. Coefficients of Gauss-Kronrod method  

Table 5-A2. Weights of Gauss-Kronrod (7-15) abscissae. 

Gauss Node (±X=) Gauss Weight (-=) Kronrod Node (±X=) Kronrod Weight (-=) 
0 0.4179591836734693877551020 0 0.2094821410847278280129992 

 0.2077849550078984676007 0.2044329400752988924141620 

0.4058451513773971669066064 0.3818300505051189449503698 0.4058451513773971669066064 0.1903505780647854099132564 

 0.5860872354676911302941448 0.1690047266392679028265834 

0.7415311855993944398638648 0.2797053914892766679014678 0.7415311855993944398638648 0.1406532597155259187451896 

 0.8648644233597690727897128 0.1047900103222501838398763 

0.9491079123427585245261897 0.1294849661688696932706114 0.9491079123427585245261897 0.0630920926299785532907007 

 0.9914553711208126392068547 0.0229353220105292249637320 

Note: Above values computed based on the scheme suggested by Laurie (1997). 

  

1
5
0
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5-D. Expansion of Einstein’s integrals using Maclaurin series  

1. ��: 	 
���� 
� �� = (−1 + �
�)� $− �

��b� + ��Q
(��b�)(��b�)− ���S

(�Eb�)(��b�)(��b�) + L���
(�rb�)(�Eb�)(��b�)(��b�)− �r��¶

(�#b�)(�rb�)(�Eb�)(��b�)(��b�)+
��F��·

(�Lb�)(�#b�)(�rb�)(�Eb�)(��b�)(��b�)+ u[�]¸& 

2. ��: 	 
���� 
� ��� � �� =
−1 + �
�


� $(��bvwx ��� vwx �)�(��b�)Q + f�E�b��Qb�� vwx ��E�Q vwx �	b�S 	 vwx �h�Q
(��b�)Q(��b�)Q + f��L�b�E�Q���b��� vwx �����Q vwx �b���S vwx ����� vwx �h�S

(�Eb�)Q(��b�)Q(��b�)Q +
f��¹F�b�¸F�Q�#�S��L��b#�¶b�rr� vwx ��EFF�Q vwx �b��F�S vwx ��LF�� vwx �bL�¶ vwx �h��

(�rb�)Q(�Eb�)Q(��b�)Q(��b�)Q − �f�¸�¹���¹E¹�Qb�E#�SbE¹#����E#�¶b�E�·��rrF� vwx �bE�¹¹�Q vwx �h�¶
(�#b�)Q(�rb�)Q(�Eb�)Q(��b�)Q(��b�)Q −

�f��¸FF�S vwx �b�F�F�� vwx ���¹F�¶ vwx �b���· vwx �h�¶
(�#b�)Q(�rb�)Q(�Eb�)Q(��b�)Q(��b�)Q + f�f�#FrFF�b#ºF#��Q�¸�#��S��r#º#��b¸�¸#�¶���#¸�·b¸¸�»brE�FF� vwx �h�·h

((�Lb�)Q(�#b�)Q(�rb�)Q(�Eb�)Q(��b�)Q(��b�)Q) +
f�f��F#¹rF�Q vwx �bº¸rrF�S vwx ��rr�FF�� vwx �b�F#FF�¶ vwx ����LF�· vwx �bLF�» vwx �h�·h

((�Lb�)Q(�#b�)Q(�rb�)Q(�Eb�)Q(��b�)Q(��b�)Q) + u[�]¸& 

1
5
1
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5-E. Numerical solvers for Gauss hypergeometric function 

 In this appendix we provide numerical methods to calculate Gauss hypergeometric 

functions which have been used in Eqs. (5-17) and (5-20). In particular, we would be interested 

in a fast method to evaluate hypergeometric functions with positive, real parameters and 

argument, compatible to the physical nature of Einstein’s integrals. As the Gauss hypergeometric 

function,	 F�(5, �; A; X)�  satisfies the hypergeometric differential equation: 

X(X − 1) GQ'G�Q + [A − (5 + � + 1)X] G'G� − 5�- = 0       (5-A5) 

almost any numerical method to handle the above ODE can be utilized to compute Gauss 

hypergeometric functions: from a Taylor series expansion, to an expansion based on Buchholz 

polynomials (Zhang and Jin, 1996; Pearson et al., 2014), to an asymptotic series expansion via 

Watson’s Lemma (Bender and Orszag, 1999), and to quadrature methods and Runge-Kutta type 

methods (Tamura, 2007). 

In this part we give a brief review of two numerical schemes to compute Gauss 

hypergeometric function. A more complete discussion of methods for general evaluation of 

Gauss hypergeometric function is not within the scope of this research (comprehensive 

discussions can be found in Zhang and Jin, 1996; Tamura, 2007; Michel and Stoitsov, 2008; 

Pearson et al., 2014). Two methods via Taylor series expansions, which are utilized for 

numerical evaluation of Gauss hypergeometric function, are given in the next paragraphs.  

In the first method we use a basic Taylor series expansion to compute power series of 

��� (5, �; A; X) as follows: 

¼F = 1; ½F = ¼F         (5-A6a) 

¼¾b�	 = ¼¾ × (Bb¾)(�b¾)
�b¾ × �

¾b� ; 	½¾b� = ½¾ + ¼¾b�; 			¿ = 0, 1, 2, … , ��B�	  (5-A7b) 
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in which, ¼¾ refers to the ¿-th term of the Taylor series expansion of Eq. (5-10), and ½¾ is the 

partial sum of the infinite series of the Gauss hypergeometric function. The stopping criteria we 

used here is defined as either three consecutive terms of 
|ÀÁ�O|
|ÂÁ| ; 

|ÀÁ|
|ÂÁNO| ;	and 

|ÀÁNO|
|ÂÁNQ| are being less 

than a user required tolerance YF or reaching to maximum number of terms ��B�. As we see in 

the following, this method shows remarkable accuracy and efficient results in low bedload-layer 

thicknesses for computing Einstein’s integrals. The maximum number of terms which is needed 

for computing the result depends on the size of the argument X, and (1 − �), and it is between 

200 to 1000 terms, as given in Figure 4.3 of Pearson et al. (2014). Rigorous numerical analysis 

of stability and stopping criteria are given in such a reference.  

 The second method to compute ��� (5, �; A; X)	 we used herein is an approximation based 

on the recurrence relation of a term via values of previous two terms, as follows: 

½�� = ½F = 1, ½� = B�
� X          (5-A7a) 

Ã¾ = (Bb¾��)(�b¾��)
¾(�b¾��) ; 	¿ = 2, 3, 4, … , ��B�       (5-A7b) 

½¾ = ½¾�� + (½¾�� + ½¾��)Ã¾X; 	¿ = 2, 3, 4, … , ��B�     (5-A7c) 

in which, terms are defined as in Eq. (5-A6) and the stopping criteria is either reaching the 

predefined maximum number of terms ��B� or the three consecutive scaled multiplication 

factors: 
|ÂÁ�O	�ÂÁ|

|ÂÁ| ;	|ÂÁ�ÂÁNO||ÂÁNO| , and 
|ÂÁNO	�ÂÁNQ|

|ÂÁNQ|  are reduced to a value below the predefined tolerance 

YF. For more information on the convergence and stability criteria see Zhang and Jin (1996), and 

Pearson et al. (2014). 
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Figures 

 

Figure 5-1. Schematic of sediment particles and velocity distribution in free surface flow. 
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Figure 5-2. Schematics of adaptive integration mesh size based on rate of change of integrand 

function with various Rouse numbers for the first and second Einstein’s integrals. 
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Figure 5-3. Plot of the Einstein integrals �� and �� computed by Gauss-Kronrod 7-15 quadrature. 
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Figure 5-4. Error of Maclaurin expansion of the TU integral with different number of terms. 
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Figure 5-5. Error of Maclaurin expansion of the ÄV integral with different number of terms. 
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Figure 5-6. Plot of the Einstein integrals J� and J� computed by two term Maclaurin series 

expansion of Einstein integrals. 
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Figure 5-7. Plot of the Einstein integrals J� and J� computed by Gauss hypergeometric function 

via method of Eq. (5-A6). 
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Figure 5-8. Plot of the Einstein integrals J� and J� computed by Gauss hypergeometric function 

via numerical library by Jin (2015). 
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Figure 5-9. CPU time of new developed methods for computing a set of 960 Rouse numbers for 

various bed layer thicknesses (same platform and same dataset as Figure 5-5). 
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Table 5-1. Relative speed up of ��/�� integration methods via retrieving the integrand functional values from the ��/�� numerical 

integration. Values averaged based on a dataset of 960 values of bedload-layer thickness and Rouse number. 

Integration 

method 

CSimpson �� 

from �� 

� = 100 

CSimpson 

�� from �� 

� = 200 

CSimpson 

�� from �� 

� = 500 

CSimpson 

�� from �� 

� = 1000 

CSimpson 

�� from �� 

� = 100 

CSimpson 

�� from �� 

� = 200 

CSimpson 

�� from �� 

� = 500 

CSimpson 

�� from �� 

� = 1000 

GK 7-15 

�� from 

�� 

GK 7-15 

�� from �� 

Relative 

decrease of 

CPU time  

20.8%	 16.7%	 26.4%	 12.6%	 33.3%	 30.6%	 35.5%	 29.6%	 −7.2%	 6.6% ∗	

*Note: In the case of recycling the �� integral from �� integral, the results are less accurate than the case that they are calculated 

with the original GK 7-15 method. 
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Table 5-2. Global accuracy of new methods of calculation or approximation of Einstein integrals (tested over a dataset of 960 bedload-

layer thicknesses and Rouse numbers) 
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Table 5-3. Speedup factor for parallel computing of new methods with various parameters, run on a dataset of 10000 pairs of (�, �) 

values.  

Method: 
Asymptotic 

2-2 

GK adaptive 

quadrature 

YF = 10�# 

GK adaptive 

quadrature 

YF = 10�¸ 

GK adaptive 

quadrature 

YF = 10�º 

CSimpson 

�� recycling 

� = 2000 

CSimpson 

�� recycling 

� = 5000 

CSimpson �� 

recycling 

� = 2000 

CSimpson 

�� recycling 

� = 5000 

Time of 

execution 

one core 

2.63E-1 [s] 1.19E+1 [s] 1.20E+1 [s] 1.25E+1 [s] 1.96E+1 [s] 4.75E+1 [s] 2.30E+1 [s] 5.57E+1 [s] 

Speedup for 

two cores 
1.028 [È È⁄ ] 1.931 [È È⁄ ] 1.933 [È È⁄ ] 1.927 [È È⁄ ] 1.981[È È⁄ ] 1.976[È È⁄ ] 1.942 [È È⁄ ] 1.930 [È È⁄ ] 

Speedup for 

three cores 
0.966[È È⁄ ] 2.787 [È È⁄ ] 2.749[È È⁄ ] 2.681 [È È⁄ ] 2.868 [È È⁄ ] 2.895 [È È⁄ ] 2.858 [È È⁄ ] 2.866 [È È⁄ ] 

Speedup for 

four cores 
0.845 [È È⁄ ] 3.462 [È È⁄ ] 3.475 [È È⁄ ] 3.371 [È È⁄ ] 3.698 [È È⁄ ] 3.747 [È È⁄ ] 3.683 [È È⁄ ] 3.672 [È È⁄ ] 
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Chapter 6: Air Distribution in Hydraulic Jumps via Two-Phase 

Flow Theory 

6.1. Introduction 

 In an open channel where the gravity-driven flow is predominantly one directional, 

hydraulic jump is a shock that connects supercritical and subcritical flow (Chow, 1959). 

Although it is a ubiquitous phenomenon in natural and manmade flows, even after a century of 

numerous studies, the details of this complex flow are not completely understood for all ranges 

of Froude numbers (Gonzalez and Bombardelli, 2005).  

 The flow in hydraulic jumps is characterized by strong turbulence, intense fluctuation of the 

water surface, significant energy dissipation, and complex air entrainment/detrainment 

(Waniewski et al., 2001; Chanson, 2009). Due to these features, a hydraulic jump can be utilized 

to dissipate energy, to mix chemicals, or to aerate a flow, of which the latter is the motivation of 

this study. The major forms of air entrainment in hydraulic jumps are: splash impact, air 

entrainment due to turbulence, and leading-edge entrainment (Waniewski et al., 2001; Chanson, 

2009; Kiger and Duncan, 2012).  

Over the last five decades, the knowledge of two-phase in hydraulic jumps has increased 

vastly owing to experimental and theoretical studies. To the best of our knowledge, Kalinske and 

Robertson (1943) were the first who experimentally investigated hydraulic jumps taking into 

account air entrainment. Later on, Rajaratnam (1962) conducted seminal studies on flow and 

turbulence patterns of hydraulic jumps followed by two-phase flow measurements. Resch et al. 

(1974) measured air fraction and bubble frequency with a hot film anemometer. Most recent 

experimental studies of hydraulic jumps concerned with void fraction are: Mossa and Tolve 
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(1998), Chanson and Brattberg (2000), Waniewski et al. (2001), Murzyn et al. (2005 a and b), 

Chanson and Gualtieri (2007), Chanson (2010), Chachereau and Chanson (2011), Leandro et al. 

(2012), Zhang et al. (2013), Wang and Chanson (2015). 

The majority of numerical studies of hydraulic jumps have modeled only the liquid phase 

flow. Abbott et al. (1969) solved the 1-D shallow water equation as the first numerical model of 

hydraulic jumps. Thereafter, owing to the notable progress in shock capturing methods in 1980s, 

Rahman et al. (1991), Lemos (1992), and Chippada et al. (1994) simulated hydraulic jump in 2-

D. Historically, most numerical simulations of hydraulic jumps ignored the two-phase nature of 

the flow, and took the conventional one-phase approach with a few exceptions (Gonzalez and 

Bombardelli (2005) and Ma et al. (2011), Mortazavi et al. (2014)).  

Finally, there are numerous theoretical studies on hydraulic jumps. Rayleigh (1914) was the 

first who discussed hydraulic jumps as a problem of mathematical discontinuity. There is a 

considerable body of literature on hydraulic jump after 1950s. The classic book by Chow (1959) 

is perhaps the most comprehensive contribution to the knowledge of hydraulic jumps it covered 

all the knowledge of hydraulic jumps to that point. Chanson (2009), and Bon et al. (2009) and 

the references therein provide the recent knowledge on the hydraulic jumps. In addition to those, 

Kiger and Duncan (2012) discussed the latest knowledge on air entrainment mechanism in the 

breaking waves and jets. Table 6-1 lists the most relevant experimental investigations in the 

literature that discuss two-phase flow features of hydraulic jumps.  

On the other hand, the Burgers’ equation is a nonlinear scalar evolution equation which was 

originally derived for investigation of the problem of fluid turbulence. It has been noticed 

afterwards that Burgers’ equation can be a powerful model for a broad range of problems which 

involve concurrent effects of nonlinearity and dissipation (for example, sound waves propagation 
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in viscous medium (Debnath, 2012); density wave in traffic flow (Bellomo and Dogbe, 2011); 

hydromagnetic waves in finite electrical conductivity medium (Olesen, 2003); and viscoelastic 

wave in solids (Camacho et al., 2008)). In addition to the aforementioned fields, this equation is 

of particular interest in water resources studies, from internal waves (Sandstrom and Oakey, 

1995), to flow in vadose zone (Warrick and Parkin, 1995; Nasseri et al., 2012). Recently, it was 

employed as a descriptive model to study fluvial structures in geomorphology (Passalacqua et 

al., 2006; Pelletier, 2007), and was used to test nonlinear transport models (Zamani and 

Bombardelli, 2014). 

Analytical solutions can provide insight into the physical processes of air bubble distribution 

in hydraulic jump. In addition, analytical solutions have a profound impact on the development 

and verification of the numerical techniques for nonlinear PDEs (Zamani and Bombardelli, 

2014). Chanson (1995, 2010) used continuum mixture theory and assumed an infinitesimal 

volume above the channel bed, Cartesian domain, and a point source air entrainment to elucidate 

transport of air bubbles within a hydraulic jump. He used the method of images to solve the 

scalar transport equation within the aforementioned domain (Chanson, 2012). Chanson took four 

simplifying assumptions to derive his analytical solution: homogenous turbulence, steady-state 

flow, uniform flow, and particularly constant rise velocity of bubbles.  

In this paper we extend the former analytical solution describing air distribution in hydraulic 

jumps; however we consider the nonlinear bubble rise velocity. Nonlinear bubble rise velocity is 

a significant factor in air bubble dynamics. Waniewski et al. (2001) noticed that the nonlinear 

buoyancy effect is the second most important driving cause within hydraulic jump after 

turbulence.  
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The remainder of the paper is organized as follows. In section two we formulate the 

governing equations. We show in section three the mathematical details of transformation of the 

governing PDE to the well-known form of Burgers’ equation, and indicate that it can be 

explicitly solved through the traveling wave solution method. Then in sections four we compare 

the analytically derived solution with lab measurements. Quantitative accuracy measures reveal 

the newly derived analytical solution is capable of make a good replica of the observed air 

concentration in the hydraulic jump. We provide empirical-analytical representation of air 

entrainment in hydraulic jumps in section five. Finally, we provide the noticeable remarks of the 

study in the section six. 

 

6.2. Formulation of Interpretative Model 

Figure 1 shows a sketch for the aeration problem in hydraulic jumps. Here, variables were 

assumed to be almost constant in transverse direction, and flow was considered two dimensional 

and steady. Air primarily enters water through two mechanisms: a) jet-type impingement from 

the jump toe (Rajaratnam, 1962; Waniewski et al., 2001; Chanson, 2009); b) surface turbulence 

entrainment in the recirculation region (Mossa and Tolve, 1998; Chanson, 2009) and c) splash 

effect entrainment (Waniewski et al., 2001; Chanson, 2009). Laboratory observations reveal that 

the former effect in the hydraulic jump is dominant aeration mechanism compared to the air 

entrainment by the surface roller and turbulence (Waniewski, 2001; Chanson and Gualtieri, 

2007; Chanson, 2009). 

To derive the governing equation based on the continuum theory of multiphase mixtures 

(Allen et al., 1988; Drew and Passman, 1999; Crowe et al., 2012), we assume each of the 

gaseous and liquid phases present at every “point” in the continuum domain. The second 
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essential assumption is that air bubbles’ size is smaller than the scales in which flow properties 

vary significantly; therefore, we can define derivatives of the properties within the flow. In 

addition we ensemble average for gas and water phases (Drew and Passman, 1999; Crowe et al., 

2012). Considering no evaporation, condensation and exchange between phases we can write the 

conservation of mass for phase	� (air or water): 

�(�����)�
 + ���
 (�̅�������) = Γ = 0; 								� = 1, 3      (6-1) 

Herein, tildes indicate ensemble-averaged variables, � refers to the phase, and ��� denotes the 

velocity of phase � in the �-th direction. In turn, �� and � denote the spatial and time coordinates, 

respectively. 

 Usually velocity of the disperse phase (sediment or air bubbles) is different from the 

carrier phase velocity (water in this case), as represented by the concept of bubble-rise velocity 

(Clift et al., 2005) or the notion of lag velocity (Parker, 2004; Garcia, 2008; Muste et al., 2009). 

However, it has been customarily assumed in previous studies that bubbles move at the same 

velocity of water in the horizontal direction; further in the vertical direction, experimental 

evidence suggest that the vertical water velocity is virtually zero, so that, the so-called "slip 

velocity" can be used to characterize the vertical bubble velocity. Thus we assume ��� = ��  and 

!�� = �", where the subscripts "$" and "%" indicate air and water, respectively, and �" is bubble 

rise velocity. For the air phase in steady state then we have:  

&&�' ((�̅� + ��) )(*̅ + *′)(�,' + �'))- = 0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
 

&&�' (�̅�*̅�,' + �̅�*′�,' + �̅�*̅�') + �̅�*′�') + ��) *̅�,' + ��) *′�,' + ��) *̅�') + ��) *′�')-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, = 0 

&&�� .�̅�*̅�,� + �̅�*)�'),,,,,, + *̅��) �′',,,,,,, + *̅��) �,,,,,� + �,���′*′,,,,,,, + ��) *)�',,,,,,,,,/ = 0 
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If we assume ��) ≅ 0; an assumption supported by empirical evidence (Crowe et al., 2012): 

&&�� (�̅�*̅�,� + �̅�*)�'),,,,,,- = 0 

&&�� (�̅�(*̅�,� + *)�'),,,,,,)- = 0 

If �̅� is not a function of space: 

&&�� (*̅�,� + *)�'),,,,,,) = 0 

&&�� (*̅�,�) = − &&�� (*)�'),,,,,,) 
&�,�&�� + �,� &*̅&�� = − &&�� (*)�'),,,,,,) 
�(�2345)�
 + ���
 6��*5���7 = 0				         (6-2) 

If we consider the flow to be steady and two dimensional (� = 1, 2): 

���
 6��*5���7 = 0				          (6-3) 

The above equation governs the instantaneous quantities. By decomposing the instantaneous 

quantities to a mean component and fluctuation component (*5 = * + *′ and ��� = �� + ��)) and 

averaging over turbulence: 

���
 (*��) = − 〈�4:;
:��
 〉	          (6-4) 

Replacing	〈*)��)〉 = −=
 �4��
, and with scaling based on the characteristic lengths and time scales 

we might be able to show the channel-wise gradient of air concentration is negligible in 

comparison with the gradient of air-concentration in depth. The equation (6-4) will be simplified 

to the form of (Chanson, 2009): 

> �4(�,?)�� + @ �4(�,?)�? = ��? A=
 �4(�,?)�? B       (6-5) 
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where > (C/E- is streamwise flow velocity, *(�, F)	(CG/CG- is the void fraction ratio in the air-

water mixture, � and F (C- are horizontal and vertical coordinates respectively, @	(C/E- is the 

velocity in F direction, and =
 	(CH/E- is air bubbles' turbulent diffusivity in the vertical direction. 

In other words, we simply consider the transport of a scalar quantity (air concentration) in the 

steady, incompressible, turbulent flow and neglect the conservation momentum of air bubbles. 

 Entrained air bubbles to the jump are convected within the flow and meanwhile they are 

diffused in the direction wall-normal direction via turbulent diffusion. Assume that the velocity 

distribution in the depth is uniform,	�I. If we assume homogenous turbulence without wall 

influence, then we have	=
 = =I. Chanson (1995) suggested an approximation of  

=I = 0.045ℎN�N for the turbulent diffusivity inside hydraulic jumps.  

 The slip velocity of a single air bubble in still water is a function of several parameters 

i.e. the size and the shape of bubble, the density difference between air and water, and the water 

viscosity and surface tension, as well as temperature and gravity. Besides those, the 

hydrodynamic conditions have effect on the slip velocity (Kulkarni and Joshi, 2005; Chanson, 

2012). If assume air weight is negligible compared to water weight, the rise velocity can be 

approximated as: 

!" = !O	P N�Q(?)R S�T�?S	 	 	 	 	 	 	 	 	 	 (6-6)	
where W	(CH/E-	is gravity, X	(Y/CEH- is the dynamic pressure, !O 	(C/E- is the bubble slip 

velocity under hydrostatic conditions (see Appendix 6-A), � 	(Y/CG- is the water density and 

other parameters are as defined previously. The air-water mixture density can be approximated 

as: 

�Z = � (1 − *) + ��*	 	 	 	 	 	 	 	 	 (6-7a)	
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In	case	of	a	dilute	mixture:	
�Z ≈ � (1 − *)	 	 	 	 	 	 	 	 	 	 (6-7b)	
Merging equation (6-7b) with the equation (6-6), the relation between hydrostatic and non-

hydrostatic bubble slip velocity is: 

!" = !O√1 − *		 	 	 	 	 	 	 	 	 	 (6-8)	
Inserting the above factors in equation (6-1), the differential transport equation of air 

distribution in the hydraulic jump can be mathematically expressed by: 

�I �4(�,?)�� + !Oq1 − *(�, F) �4(�,?)�? = =I �r4(�,?)�?r 	 	 	 	 	 	 (6-9)	
Chanson (1995) measured and reported =I values. In the present work, the diffusivity of bubbles 

and hydrostatic rise velocity are taken as constants, and velocity is assumed uniform (Chanson, 

1995, 2009).  

 

6.3. Analytical Solutions for Lower and Upper Regions  

6.3.1. Approximation for the lower and shear region 

 Although equation (6-9) describes a two-dimensional, steady-state, advective-dispersive 

transport, it could be treated similarly to a one dimensional, non-steady, advection-diffusion 

equation (ADE) given that their mathematical structures are identical. There is substantial 

literature on the solution techniques of one dimensional linear ADE and nonlinear Burgers' 

equation (for example see Sachdev, 2008; Zamani and Bombardelli, 2014). Existing techniques 

are not directly applicable to solve equation (6-9) because of the nonlinear form of the bubble's 
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rise velocity. Taking into account the value of air fraction (* < 50%) in the shear region, we 

expand the square root factor using Taylor series: 

√1 − * = ∑ (wN)x(Hy)!(NwHy)(y!)r	{x (−*)y|y}I 	 	 	 	 	 	 	 	 (6-10)	
If we truncate the expansion after the first two terms, for the void fraction ratio within the 

range of (0	 − 	50%), the “error” of the approximation lies below 1%. Figure 6-2 shows the 

comparison of the “exact” value of the rise velocity versus its linearized approximation. 

	√1 − * ≅ 1 − {~*	 	 	 	 	 	 	 	 	 	 (6-11)	
Substituting equation (6-11) in the equation (6-9), gives: 

�I �4�� + !O(1 − {~*) �4�? = =I �r4�?r	 	 	 	 	 	 	 	 (6-12)	
6.3.2. Analytical solution procedure 

Introducing a new vertical space variable	F = � + ��;� � we can remove the advective term 

containing 
����, from the equation (6-12) (new variable is moving along the characteristics), the 

change of variable yields: 

�I �4�� − {~ !O* �4�� = =I �r4��r	 	 	 	 	 	 	 	 	 (6-13)	
Now,	 it is convenient to express equation (6-13) in dimensionless form. To that end, the 

following coordinate transformations are introduced:	
� = {~ ���� �		 	 	 	 	 	 	 	 	 	 (6-14a)	
� = N�{� ��r��;� �	 	 	 	 	 	 	 	 	 	 (6-14b)	
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Using the new coordinates – Eq. (6-14) – and rework Equation (6-13), it can re-written in 

nondimensional form as: 

�4�� − * �4�� = �r4��r	 	 	 	 	 	 	 	 	 	 (6-15)	
which is the classic form of the Burgers’ equation. 

The Hopf-Cole transformation (Sachdev, 2008) and travelling wave solution are two common 

ways of explicitly solving Burgers’ equation (Zamani and Bombardelli, 2014). Hereby, we use 

the travelling wave ξ = � − $� where ξ represents a fixed profile, moving with the constant 

wave speed	$. 

*(�, �) = �(ξ) = �(� − $�)  
By replacing *(�, �) via the chain rule, we can degenerate the equation (6-15) to the form of a 

second order, nonlinear, reducible ODE: 

�))(�) + �(�)�)(�) + $�)(�) = 0	 	 	 	 	 	 	 	 (6-16)	
Equation (6-15) can be solved by direct integration with respect to �; the answer is: 

�(�) = �(� − $�) = √H
�yO����r√r���w����� 	 	 	 	 	 	 	 (6-17)	
Rebuilding	the	solution	in	the	original	variables	we	obtain:	
*(�, F) = N�� �√2 �$�ℎ �

 ¡¢�£�(?w¢�¤��)w��¥ ¦ ¢�r£�¤��	§�r√H�� ¨ − $©N¨		 	 	 	 (6-18)	
where	©N,	©Hand	$	are	values	which	have	to	be	defined	based	on	the	boundary	conditions.	
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6.3.3. Boundary conditions 

 The specification of physical boundary conditions in hydraulic jumps is complicated, due 

to the moving nature of the free surface. Based on the available experimental measurements 

(Chanson, 1995; Chanson and Brattberg, 2000; Murzyn et al., 2005; Chanson and Gualtieri, 

2007) we define the boundary condition as follows: 

*(� = 0, F) = *I(F)	 	 	 	 	 	 	 	 	 	 (6-19)	
*(�
«¬ < � < C�, FZ��) = *Z��(�)	 	 	 	 	 	 	 	 (6-20)	
*(�
«¬ < � < C�, F → −∞) = 0	 	 	 	 	 	 	 	 (6-21)	
where C�is the aeration length of the hydraulic jump. *I(F) depends on the inflow condition, in 

partially developed inflow condition *I(F) = 0 and in case of fully developed inflow there is 

pre-jump surface aeration and *I(F) starts at one and in drop and asymptotes to zero as depth 

increases with an erfc function-type behavior. 

6.3.4. Analytical solution for air bubbles distribution in the upper region 

For the sake of completeness, we also provide an analytical solution of the air concentration 

in the upper part of the hydraulic jump. Air entrainment/detrainment in the free surface of 

hydraulic jump is essentially dominated by the interfacial aeration. For that reason, Chanson 

(1995) suggested the analytical solution for the two dimensional axisymmetric free jet can be 

adopted to represent the air-bubbles distribution in the upper region (Murzyn et al., 2005): 

*(�, F) = NH ¯1 + °±² �?w?³´�%	HP£µ¶ ¨·        (6-22) 
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where erf is the error function and air concentration value asymptotes to one as F → ∞. In the 

next two sections we provide the comparison of the newly derived analytical solution for lower 

region (6-18) and the upper region analytical solution (6-22).  

 

6.4. Experimental Validation of the Analytical Solution 

In the derivation of the analytical solution for the air, we made some simplifying assumptions 

regarding the nature of the processes that take place in the transport of bubbles. In this section, 

we validate the obtained solution and assess its competence in the representation of the 

phenomenon. To that end, we use three laboratory measured datasets: tests P10 and C2 by 

Chanson and Qiao (1994) and run T8-5 by Chanson and Brattberg (2000). 

The tests by Chanson and Qiao (1994) were performed in a rectangular, 3.2 − ¸ long glass-

made (floor and walls), horizontal channel with 0.25	¸ width. Inflow condition was not fully 

developed in both runs. The instrumentation they were employed: single-tip conductivity probe, 

with inner platinum electrode (¹ = 0.35	¸¸); pointer gauge; and Pitot tube. Experiments P10 

and C2 were conducted with º± = 6.05 and 5.66, and jump toe locations were �
«¬ = 0.89 and 

0.669 ¸, respectively. Air concentration distribution inside the jump was measured with analog 

samplings during 60 to	300 ». Discharge was measured with a sharp-crested weir which was 

located at the end on the channel. More details on the test and instrumentation are found in 

Chanson (1995).  

Test T8-5 by Chanson and Brattberg (2000) was conducted in a geometrically identical 

channel. Discharge was measured trough a V-notch weir. Mean flow velocity and turbulence 

fluctuations were measured through a Pitot tube with 1% accuracy. The void fraction was 

measured using a dual-tip conductivity probe with a platinum electrode with smaller size 
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(¹ = 0.25	¸¸). In this test, air-bubble data were digitally recorded for 10	». The positioning of 

instruments in this test was partially automated and it was tuned for the accuracy of 0.01	¸¸. 

This experiment was done with º± = 8.485 and jump toe was located at �
«¬ = 0.5	¸ from the 

gate. Like the tests P10 and C2, the inflow condition was also partially developed (Chanson and 

Brattberg, 2000).   

For the statistical comparison of observed and analytical model values of air concentration in 

hydraulic jumps, bias, scatter index and coefficient of determination are used. Bias is the sum of 

the error and it is a measure to unveil over/under prediction. Scatter index (¼½) is related to the 

root mean square error (¾Y¼¿), which is normalized by the average values of the observed 

quantity. Coefficient of determination (¾H) is a common statistical measure used to assess how 

well a model captures observed data.  

¼½(%) = P�À∑ (�
wÁ
)À
Â� r
�À∑ Á
À
Â� × 100 = ÄÅÆÇÁ, × 100      (6-25) 

È�$» = NÉ∑ (©� − Ê�)É�}N          (6-26) 

¾H = 1 − ∑ (�
wÁ
)r		À
Â�∑ (�
wÁ,)r		À
Â�           (6-27) 

In the above equations, © is the air concentration calculated by the analytical model; Ê is the 

observed air concentration; the mean value is denoted by overbar and Ë is number of 

observations. Table 6-3 shows the error statistics of air concentration calculated by the new 

analytical solution which defines lower region and shear region of hydraulic jumps. 
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6.5. Air Entrainment and Detrainment 

 Air entrainment/detrainment characteristics of hydraulic jumps were empirically studied 

by several researchers (Rajaratnum, 1961; Hager, 1992; Chanson, 1995; Murzyn et al., 2005; 

Chanson and Gualtieri, 2007). Basically, depth-average air concentration is significant near the 

jump toe, and reduces towards the end of the jump. In this section, first we assess the empirical 

formulas to account for the location of maximum and streamwise air concentration and 

compared them with formulas by Rajaratnum (1961) and Hager (1992). Second, we propose a 

new model for relative air entrainment versus the jump length. All of the above relations are 

validated against the experimental results of Chanson (1995), Murzyn et al. (2005), and Chanson 

and Gualtieri (2007). 

6.5.1. Distribution and location of maximum air concentration 

 In the multiphase flow literature of hydraulic jumps, it is mentioned that the maximum air 

concentration would happen in a close proximity of the jump toe. Hager (1992, 1995) suggested 

that the maximum air concentration happens at the ÌÍÎÍÌ = Ï. ÐÑÒ. The other relation which is 

suggested by Rajaratnam (1962) is based on the upstream Froude number: 

ÓÍÔÕ = 6ÓÍÔÕÎÍÌ7PÐÌÍÖÍ ×AÏwÐÌÍÖÍ B        (6-29) 

in which, 
ÌÍÖÍ is the dimensionless streamwise length coordinate and ÓÍÔÕÎÍÌ  is the maximum air 

concentration in the jump length which is either found by measurement or approximated as a 

function of upstream Froude number as: 

ÌÍÎÍÌ = Ï. ØÑÒ �ÙÕÏÚ.Ø 	×ÏwÙÕÏÚ.Ø �ÏÛ        (6-30) 
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The above formula is recommended for Froude numbers less than ten. Figure 6-9 shows the 

experimental location of maximum air concentration against the empirical formula and, as it can 

be seen, the experimental values deviate from the empirical formula as the upstream Froude 

number exceeds 10. And Figure 6-10 shows the air concentration as a function of streamwise 

coordinate which is non-dimensionalized by aeration length. In this figure we used data collected 

by Chanson (1995), Murzyn et al. (2005), and Chanson and Gualtieri (2007) to assess the 

formula by Rajaratnam (1962).  

6.5.2. Distribution of mass of air in hydraulic jump 

 In this section, we suggest a novel empirical-analytical relation for entrained air mass in 

the hydraulic jump. First we discuss how to find air mass in each cross-section of the hydraulic 

jumps based on then measurements along the hydraulic jump. Then we devise a mathematical 

relation for the mass of air along hydraulic jumps. 

We need a function to define mass such that: 

ÜÝÍ(Ì}ÌÞß×)ÜÌ → ∞           (6-30a) 

ÜÝÍ(Ì}ÖÍ)ÜÌ = Û            (6-30b) 

Ý(Ì = ÖÍ) = àáÍÔÕ          (6-30c) 

Equation (6-30a) accounts for the instantaneous air entrainment in the jump toe. Equation (6-

30b) shows that after passing the aeration length there will be a balance between entrained and 

detrained air. In turn, equation (6-30c) defines that at the end of the aeration length the entrained 

mass is equal to the product of the jump air entrainment ratio "à" and air density (Hager, 1992). 
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There are various experimental formulae to approximate à; we use the one by Hager (1992) 

herein: 

à = Û. ÛÏØ(ÙÕÏ − Ï)Ï.ÒÚâ          (6-31) 

 Based on the physics of air entrainment/detrainment phenomenon and the above 

mentioned boundary conditions (Eq. 6-30) we assume a superposition of Gamma distribution 

and trimmed ramp function for the air mass in the jump: 

Ý(Ì) = àáÍÔÕ ãÖÍ§|Ì|w|ÌwÖÍ|ÒÖÍ + åæç(åÏ)åÒåÏ ÌåÏwÏ×w
ÌåÒè	      (6-32) 

Herein, åÔ, Ô = Ï, Ò, æ are regression factors, ç(. ) is the gamma function, and ÖÍ is the aeration 

length. Figure 11 shows the measured air mass in the hydraulic jump by Chanson (1995), 

Murzyn et al. (2005) and Chanson and Gualtieri (2007), against equation (6-32).  

 

6.6. Summary and Conclusions 

A new analytical solution to elucidate the air fraction distribution in the developing turbulent 

shear region of hydraulic jump has been obtained. This analytical solution still assumes 

simplifying assumptions, as follows: homogeneous turbulence in vertical column; uniform 

steady unidirectional flow; and it neglects the air concentration gradient in the flow direction. 

However, the previous exact solutions of the same phenomenon have been derived with the 

assumption of constant bubble rise velocity whereas in this study the nonlinear bubble slip 

velocity was considered. In this study, we first derived a process-based model for void fraction 

distribution in hydraulic jumps, and then this governing equation was degenerated to a Burgers’ 



186 

 

type equation through transformations and mathematical calculations. In the last part, the 

simplified governing equation was solved analytically using traveling wave solutions.  

To validate the newly derived analytical solution, we checked the results versus lab 

measurements. We compared the analytical solution with the three datasets: tests P10 and C2 

from Chanson and Qiao (1994), and test T8-5 Chanson and Brattberg (2000). Taking everything 

into account, the derived analytical solution not only captures the trend of the measured air 

distribution considerably, but also in the lower region it shows excellent agreement with the 

benchmark.  

We also used the data collected by Chanson (1995), Chanson and Brattberg (2000), Murzyn 

et al. (2005), and Chanson and Gualtieri (2007) to assess the air distribution in the roller region 

of hydraulic jumps (Chanson, 1995). The validation results the analytical solution greatly 

resembles the distribution of air bubbles in the hydraulic jumps. We also looked into the 

extension of both solutions into the turbulence shear region. Both of the solutions (recirculation 

region and lower region) are not able to mimic the air bubble distribution in the shear region of 

the hydraulic jump. 



187 

 

Appendix of Chapter 5 

6-A. Bubbles rise velocity under hydrostatic conditions 

Air bubbles’ terminal rise velocity in quiescent flows depends on several parameters: 

viscosity and surface tension of water, bubble size and shape, density of water and air 

(Michaelides, 2006). Chanson and Brattberg (2000) showed that in the turbulent shear region of 

hydraulic jumps, bubbles are around one millimeter in size while the recirculating region 

includes both large and small bubbles as well as air-water packets near the surface. Murzyn et al. 

(2005) indicated that the vast majority of bubbles are larger than 1	¸¸ in Sauter mean diameter. 

Waniewski et al. (2001) reported the size of the air-bubbles within the range of 0.001 to 

0.5	¸¸, where the majority of them were approximately of 0.04	¸¸.  

For an individual, isolated small bubble	(é < 0.1	¸¸), which is approximately a sphere due 

to the surface tension being the dominant effect on its shape, Stokes' law gives accurate 

description of hydrostatic, bubble-rise velocity (Stokes, 1880): 

!O = H� R(�Qw�3)êQ éH		          (6-A1) 

where é is equivalent air-bubble diameter and ë  is water viscosity. For spherical bubbles with 

diameters less than a millimeter, the rise velocity is approximated by (Bhaga and Weber, 1981; 

Kulkarni and Joshi, 2005):  

!O = NNì R(�Qw�3)êQ éH	          (6-A2) 

For bubble sizes larger than 1	¸¸, various relations have been suggested (e.g. Kulkarni and 

Joshi, 2005):  
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!O = PH.N{í�Qî + 0.52Wé         (6-A3) 

where ï is surface tension between water and air. In the above relation, “d”, the 

equivalent air bubble diameter is correlated to the bubble chord length (Clark and Turton, 1988). 

Bubble chord length distribution follows a gamma shape distribution with a peack size around 

1	¸¸ (Chanson, 1996, page 157; Waniewski, 2001; Chanson 2004, page 367). The concept of é 

loses its meaning in regions where * > 0.25. Murzyn et al. (2005) found that in hydraulic jumps 

the distribution of bubble diameters does not influenced by the Froude number or vertical 

position and bubbles have an almost uniform size of around 4	¸¸ everywhere.  
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Figures: 

 

 

Figure 6-1. Schematic of air concentrations in hydraulic jumps; Top) we use x to denote the 

stream-wise direction, and y to the vertical direction. Hager et al. (1990) and Hager (1992) 

suggested ÖÕ = ÑÏ AÏñÛ òóôõ AÙÕÏÒÛ B − ÏÒB and ÖÍ = ÑÒ6æ. âqÙÕÏ − Ï. â7 for roller length and 

aeration length of hydraulic jump based on upstream Froude number. Carollo et al. (2012) 

recommended a relation based on the ratio of upstream and downstream depths for roller length 

as: ÖÕ = Ò.ÒÚÚ
�ÑÏÑÒ�Ï.ÒöÒ

 . Murzyn et al. (2007) found linear relations for ÖÕ based on Froude and Weber 

numbers as: ÖÕ = ö. âÑÏ(ÙÕÏ − Ï. æ) and ÖÕ = Û. ÏöÑÏ÷×Ï. Hager (1992) stated that 

maximum air concentration occurs near to jump toe at ÌøÎÍÌ = ÏÐÖÍ. Bottom) A schematic of 

velocity and air-concentration distribution in depth after (Chachereau and Chanson, 2011).  
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Figure 6-2. Approximation √Ï − ù with the first two terms of Taylor series expansion, exact 

value (solid blue) versus approximated (maroon color dashed line), normalized truncation error 

versus concentration (right axes). 
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Figure 6-3. Comparison of air distribution in depth at location � − �
«¬ = 0.2	¸ from the jump 

toe, analytical solution (solid line) versus measurements (dots), and former formula by Chanson 

(1995), (cross). Run T8-5 by Chanson and Brattberg (2000);	º± = 8.48. 
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Figure 6-4. Comparison of air distribution in depth at location � − �
«¬ = 0.4	¸ from the jump 

toe, analytical solution (solid line) versus measurements (dots) and former formula by Chanson 

(1995), (cross). Run T8-5 by Chanson and Brattberg (2000), º± = 8.48.  
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Figure 6-5. Comparison of air distribution in depth at location � − �
«¬ = 0.07	¸ from the jump 

toe, analytical solution (solid line) versus measurements (dots) and former formula by Chanson 

(1995), (cross). Run P10-C5, º± = 6.05, (Chanson 1995).  
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Figure 6-6. Comparison of air distribution in depth at location � − �
«¬ = 0.1	¸ from the jump 

toe, analytical solution (solid line) versus measurements (dots), and former formula by Chanson 

(1995), (cross). Run P10-C6, º± = 6.05, Chanson (1995).  
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Figure 6-7. Comparison of air distribution in depth at location � − �
«¬ = 0.2	¸ from the jump 

toe, analytical solution (solid line) versus, run P10-C7 Chanson 1995 (dots), and former formula 

by Chanson (1995), (cross), Fr=5.66.  
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Figure 6-8. Comparison of normalized depth versus air concentration data with and analytical 

solution given by equation (6-22) (solid line). Froude numbers vary from 2 to 14, statistics of the 

comparison in the recirculation and shear layer regions are provided in Table 6-3. Datasets of 

Fr=1.98, 2.43, 3.65 and 4.82 are tests a, b, c, and d of Murzyn et al. (2005), respectively. All data 

of Fr=6.05 were measured by Chanson (1995). Fr=8.47 measured by Chanson and Brattberg 

(2000) and Fr=10.76 and Fr=14.27 are reported by Gualtieri and Chanson (2007). 
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Figure 6-9. Location of maximum air concentration, experiment versus empirical formulae by 

Rajaratnam (1962).  
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Figure 6-10. Air concentration distribution along the hydraulic jump.  
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Figure 6-11. Schematic of interfacial air mass exchange calculation methodology based on mass 

balance.  
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Figure 6-12. Entrapped air mass distribution along the hydraulic jump. 

 

  



207 

 

Table 6-1. Summary of experimental investigations of hydraulic jump with particular emphasis on air entrainment. 

Study Flow Conditions Measurement technique 

Rajaratnam (1962) º±N = 2.42 − 8.72, éN = 0.025	¸, ú = 0.305	¸  Electric resistive probe calibrated against Saint 

Antony Falls Lab benchmark for up to 20% air 

concentration only 

Resch et al. (1974) º±N = 3.0 − 8.0, éN = 0.012 − 0.039	¸, ú =0.39	¸ 

Hot-film anemometry DISA 55A87 (0.6	¸¸ 

sensor) 

Thandaveswara (1974) º±N = 7.16 − 13.31, éN = 0.010 − 0.152	¸ partially 

developed inflow conditions  

Dual tip conductivity probe 

Babb and Aus (1981) º±N = 6.0 , éN = 0.035	¸, ú = 0.46	¸ Conical hot-film anemometry DISA 55R42 (0.4	¸¸ 

sensor) 

Hoyt and Sellin (1989) º±N = 2.5 − 3.5, ú = 0.105	¸, éN = 0.035	¸ Drag-reducing additive polyacrylamide, photograph 

and visual observation 

Chanson and Qiao 

(1994) 
º±N = 5.0 − 8.1, éN = 0.016 − 0.17	¸, ú = 0.25	¸ 

partially developed inflow conditions 

Single tip conductivity probe (0.35	¸¸ inner 

electrode) 

Mossa and Tolve (1998) º±N = 6.42 − 7.33, éN = 0.185 − 0.020	¸, ú =0.40	¸ partially developed inflow conditions 

Image processing 

Chanson and Brattberg 

(2000) 
º±N = 6.33 − 8.48, éN = 0. 014	¸, ú = 0.25	¸, 

partially developed inflow conditions 

Dual tip conductivity probe (25	ë¸ inner electrode) 

Waniewski et al. (2001) º±N = 11.5 − 19.3, éN = 0.32 − 0.6	û¸, ú =0.152	¸ , partially developed inflow 

Phase Doppler anemometry 

Murzyn et al. (2005) º±N = 2.0 − 4.8, éN = 0. 021 − 0.059	¸, ú =0.30	¸ partially developed inflow conditions 

Dual tip optical fiber sensors 

Valle and Pasternack
a
 

(2002) 

Three cases of submerged jump, strong free surface 

jump and large free surface jump with ü = 40 −85	¸G»wN 
Field measurement with TDR probe 

Valle and Pasternack
b
 

(2006) 
ú~2	¸, º± = 1.2 − 2, bedrock step pool channel, 

submerged and sloping jumps  

Dual-rod CS615 probe 

2
0
7
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Gualtieri and Chanson 

(2007) 
º±N = 2.0 − 4.8, éN = 0. 012	¸, ú = 0.25	¸, 

partially developed inflow conditions 

Single tip phase-detection probe (0.35	¸¸) 

Chanson (2010) º±N = 5.1 − 11.2, éN = 0. 017 − 0.019	¸, ú =0.5	¸ partially developed inflow conditions 

Dual tip phase-detection probe (0.25	¸¸) 

 

Leandro et al. (2012) º±N = 4.4 − 5.1, éN = 0. 039	¸, ú = 0.50	¸ 

partially developed inflow conditions 

Dual tip conductivity probe (0.25	¸¸ inner 

electrode) and bubble image velocimetry (BIV) 

Lin et al. (2012) º±N = 2.43 − 5.35, éN = 1.92 − 2.00	û¸ ú =0.5	¸ 

PIV for flow and BIV for air 

a) 
The study was conducted in a natural stream with mixed alluvial-bedrock section in South Fork American River; Upper Chili Bar, 

Little Maya, and First Threat, three station downstream of Chili Bar Dam, California.
 b) 

The study region was a bedrock natural stream 

in upper South Fork American River basin, Sierra Nevada, California.  

  

2
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Table 6-2. Flow and measurement condition of experimental data which is used for validation of equations (6-18) and (6-22). 

Reference and Run 
ú (¸) ü (C ¼⁄ ) �
«¬ (¸) FN (¸) �N (¸ ¼)⁄  

º±N ú° ¾° Instrumentation 

Chanson (1995) test P10 0.25	 10.5	 0.89	 0.017	 2.47	 6.05	 36.5	 4.2 × 10{ Single-tip phase-detection 

probe (∅ = 0.35	mm) 

Chanson and Brattberg 

(2000) test T8-5 
0.25	 10.99 0.50 0.014 3.14	 8.47	 42.1	 4.4 × 10{ Dual-tip phase-detection 

probe (∅ = 0.025	mm) 

Murzyn et al. (2005)   

test a 
0.30	 26.55 0.43 0.059 1.50	 1.98	 41.3	 8.8 × 10{ Dual-tip phase detection 

probe (∅ = 0.01	mm) 

Murzyn et al. (2005)   

test b 
0.30	 22.63 0.44 0.046 1.64	 2.44	 39.9	 7.5 × 10{ Dual-tip phase detection 

probe (∅ = 0.01	mm) 

Murzyn et al. (2005)   

test c 
0.30 19.68 0.34 0.032 2.05 3.66 41.6 6.5 × 10{ Dual-tip phase detection 

probe (∅ = 0.01	mm) 

Murzyn et al. (2005)   

test d 
0.30 13.80 0.36 0.021 2.19 4.83 36.0 4.6 × 10{ Dual-tip phase detection 

probe (∅ = 0.01	mm) 

Gualtieri and Chanson 

(2007) run 7/2/2006 
0.25	 12.20	 0.50	 0.013	 3.813	 10.76	 48.91	 4.9 × 10{ Single-tip phase-detection 

probe (∅ = 0.35	mm) 

Gualtieri and Chanson 

(2007) run 8/2/2006 
0.25	 14.50 0.50 0.012 4.874	 14.26	 60.28	 5.8 × 10{ Single-tip phase-detection 

probe (∅ = 0.35	mm) 

 

2
0
9
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Table 6-3. Validation statistics of new analytical solution (6-18) for lower region compared 

to observation and numerical simulation.
 

Validation  

Benchmark 

Lower region Shear layer
 

SI (%) Bias R
2 

SI (%) Bias R
2 

CFD model, � = 0.4	¸, Waltz  

(2009) 
3.41 0.042 0.907 20.01 0.019 0.619 

Test T8-5, � = 0.2	¸, Chanson 

and Brattberg (2000)  
8.10 -0.006 0.967 23.50 -0.0003 0.652 

Test T8-5, � = 0.4	¸, Chanson 

and Brattberg (2000) 

9.48 -0.0009 0.945 14.0 -0.0005 0.532 

Test P10, � = 0.07	¸, Chanson 

(1995) 

4.84 -0.0005 0.994 14.74 0.0027 0.683 

Test P10, � = 0.1	¸, Chanson, 

(1995) 

6.22 -0.002 0.994 7.39 -0.0005 0.663 

Test P10, � = 0.2	¸, Chanson, 

(1995) 

11.0 -0.0002 0.948 33.7 -0.0003 0.558 
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Table 6-4. Validation statistics of upper part analytical solution (6-22) compared to 

observation and numerical simulation.
 

Validation  

Benchmark 

Recirculation region Shear layer
 

SI (%) Bias R
2 

SI (%) Bias R
2 

All 541 Data points 8.9 0.013 0.909 55.6 0.166 0.735 

Chanson (1995) test P10 4.1 -0.067 0.937 43.2 -0.102 0.566 

Chanson and Brattberg 

(2000) test T8-5 
11.47 0.02 0.990 49.2 0.147 0.638 

Murzyn et al. (2005)   test a 4.57 -0.02 0.944 76.2 0.259 0.76 

Murzyn et al. (2005)   test b 8.84 0.006 0.955 77.1 0.277 0.72 

Murzyn et al. (2005)   test c 7.11 -0.025 0.874 67.47 0.206 0.707 

Murzyn et al. (2005)   test d 4.97 0.004 0.961 56.2 0.176 0.813 

Gualtieri and Chanson 

(2007) run 7/2/2006 
9.58 0.023 0.860 28.3 0.055 0.567 

Gualtieri and Chanson 

(2007) run 8/2/2006 
9.04 0.044 0.852 48.2 0.143 0.378 
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Chapter 7: Numerical Model Verification 

7.1. Introduction  

 Growth in computational power in recent decades, in addition to cost and scale effects of 

physical models, increased the popularity of computational simulation in design, analysis, and 

optimization of engineering projects (Roache, 2009). Unfortunately, coding and simulation 

errors are not uncommon among computational models. These computational errors may 

seriously affect the professional career of a code user (see for example: Miller, 2006; Keenan, 

2012) or they could end up in extreme engineering tragedies. For example, faulty numerical 

modeling of snowmelt led to a severe flood in Colorado River in 1983 (Hatton, 1997). Another 

catastrophic case happened on August 23, 1991, in the North Sea where a 700 million dollar oil 

rig sank due to inaccurate design of a condeep
1
. Post-audit of the numerical model showed that 

the failure was due to a problematic finite element code computation by NASTRAN (Collins et 

al., 1997). The examples above strongly suggest that, without reliable “verification,” modelers 

should not put too much trust in numerical modeling. 

 In the literature of numerical modeling of Partial Differential Equations (PDEs), verification 

is defined as “solving the equations right” versus validation which is defined as “solving the 

right equations” (Roache, 1997). Verification is the set of activities which has to be done to build 

confidence in the results of a numerical model. Verification has two fundamental aspects: a) 

solver (code) verification and b) solution (calculation) verification. Solver verification is a 

procedure of checking the code for bugs, inconsistencies and imperfections (Roache, 2009; 

Oberkampf and Roy, 2010). Solver verification is a one-time activity which must be conducted 

by code developer(s) or whoever modifies a code for his/her particular use. There is no need to 

                                                           
1
 Abbr. concrete deep water structure 
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repeat solver verification activities unless the source code is changed. On the other hand, solution 

verification is the process of quantitatively assessing the error in numerical solutions which has 

to be performed in each and every application of the code which is considerably changed 

compared to each other. Solution verification is among the duties of the model user. In the 

following section, the techniques of verification in computational fluid mechanics are briefly 

discussed.  

7.2. Verification Criteria for Numerical Solvers 

 Formal proof of correctness of a solver is not forthcoming; however, there are activities 

which are able to provide a framework for a reliable testing of a computer code. The criteria for 

code verification are suggested as follows (in order of increasing rigor, Knupp and Salari, 2003): 

 Expert judgment after extensive use in wide range of problems. 

 Error quantification. 

 Consistency-convergence test. 

 Order of convergence test.  

The expert's judgment is used when results are given to an expert and he/she will assess it to 

make sense. This criterion is very loose and with all the respect for Dr. Patrick Knupp as one of 

the pioneers of "V&V" we do not recognize it as "formal" verification method. Error 

quantification consists in assessing misfit between numerical results and a reliable benchmark 

(reliable benchmark will be discussed in the rest of this section). This criterion is more advanced 

and objective compared to the expert's opinion; however, there are many cases in which there is 

a hidden bug in the code, inconsistency between parts or a mis-implementation of a solver where 

the issue does not amplify error such that modeler can notice that there is problem evident (for 
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example, see Ateljevich et al., 2011). The third level is checking if the solver results "converge" 

as the discretization size in time and space shrink. Finally, the most rigorous measure is similar 

to the third level (consistency and convergence test) while the quantitative measure of 

convergence is being studied. Comparing observed order of convergence with formal order of 

convergence of the scheme is the most restrictive verification test and many researchers agree on 

the extreme efficiency of this method in uncovering imperfections in coding and implementation 

of numerical software (Roache, 1997, 2009; Knupp and Salari, 2003; Wang et al., 2008; 

Graziani, 2008; Oberkampf and Roy, 2010; Ateljevich et al., 2011; Zamani and Bombardelli, 

2014). The next section provides insight into the techniques of performing mesh convergence 

test. 

7.2.1. Mesh-convergence study as a verification method  

 The crux of mesh convergence test is rooted in the Lax Equivalence Theorem. This 

theorem states that convergence implies both consistency and stability in the analysis of Finite 

Difference Method of numerical discretization of PDEs (Lax and Richtmyer, 1956). Later on 

many researchers employed the same concept of Lax Equivalence Theorem for Finite Element 

Method (FEM), Finite Volume Method (FVM), and Boundary Element Method (BEM) for the 

purpose of code verification (Roache, 2009). Mesh-convergence tests are well-accepted methods 

for verifying numerical solvers in computational fluid mechanics. They consist of reducing the 

mesh size (both spatial and time steps) and in checking the evolution of the ratio of error metrics. 

Grid-convergence tests check if the formal grid accuracy of the numerical scheme is reproduced 

by the code. Coding bugs and implementation errors could be detected via this vehicle. The 

question here is how to determine error when conducting mesh convergence tests since, for most 

of the PDEs of interest in engineering, there is no analytical solution. The general roadmap for 
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any verification study (solver or solution) is shown in the Figure 7-1. The first preference for 

conducting mesh convergence studies is the Method of Exact Solution (MES). In this method, 

the evolution of errors is observed based on an exact solution as a benchmark (Zamani and 

Bombardelli, 2014).  

 

Figure 7-1. Suggested procedural flow of code verification actions in different situations. 

 MES is the most convenient code verification method. Unfortunately, we are not 

fortunate enough to have an analytical benchmark for all system of PDEs. Therefore, other 

alternatives of code verification should be considered. In the absence of analytical solutions, if 
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the source code is open to modifications, the Method of Manufactured Solution2 (MMS) could 

be utilized (Roache, 2009; Zamani and Bombardelli, 2014). MMS has its own drawbacks and it 

must be performed with special care. MMS is considered a very strong error probe. If the source 

code is not accessible, which is the case in most of the commercial CFD packages, we have to do 

"Black Box Testing" (Ateljevich et al., 2011). Black Box Testing constitutes a set of practices for 

computational code testing in the situation where only input and output of results are available. 

The first common method of Black Box Testing is checking the error evolution versus the results 

of the exact same problem (similar initial and boundary condition) solved with higher resolution, 

already verified code on the dense mesh. And, finally, in the case where the corresponding 

analytical solution does not exist, access to the source code is restricted, and another reliable 

high resolution solver of the same governing equation is not available, the verification study 

must be performed via Richardson Extrapolation (Roache and Knupp, 1993). Careless 

application of the above mentioned techniques may result in vague outcomes or erroneous 

interpretation. The next part discusses the assumptions and prerequisites of mesh convergence 

studies.   

7.2.2. Ambiguity in the mesh convergence test 

 Due to the fact that the derivation of the Lax Equivalence Theorem makes several 

assumptions, any violation of these assumptions may affect the results of the mesh convergence 

study. A modeler may find an order of convergence lower than the expected order of 

convergence in a simulation because of the issues not related to bugs or imperfection of the code. 

In the following paragraphs, we briefly discuss common pitfalls a modeler may encounter in the 

verification process:  

                                                           
2
 In the CFD verification literature variations of this method is called "Man Made Solution" or "Prescribed 

Forcing Method" which are identical to the MMS in principles.  
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 Smoothness of the solution: shock presence or shock formation in a numerical solution 

may strongly impact the convergence of the solution in various ways. For example, a shock may 

trigger an auxiliary numerical scheme to deal with the effect of shock (van Leer, 1979) or it may 

directly affect the order of global convergence measures (Zamani and Bombardelli, 2014). 

 Iteration error: the final outcome of all discretizations of a PDE such as FEM, FDM, 

FVM, etc. is a sparse system of algebraic equations. In real scale problems, this sparse matrix is 

solved by iterative methods (Saad, 1996). In a mesh convergence study, it is usually assumed 

that the iteration error in the solution is at least two orders of magnitude lower than discretization 

error. However, this issue could cause crucial confusion in several cases (Roache, 2009).    

 Difficulties induced by the scale of the problem: if the test problem for the mesh 

convergence study is chosen in such a way that one phenomenon is dominant and its effect is 

larger than the others in orders of magnitude, the imperfection in the low effect phenomenon 

may be concealed by the dominant effect. For example, code verification of a transport solver 

should not be performed in very low and very high Peclet numbers (Zamani and Bombardelli, 

2014).   

 Appropriate convergence zone: a mesh convergence study has to be done for mesh sizes 

which are fine enough to capture the problem completely. In coarser mesh sizes, oscillatory 

convergence-behavior occurs which may cause serious misinterpretations of the mesh 

convergence results. Figure 7-2 shows the convergence-behavior versus the mesh size.  
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Figure 7-2. Schematic of asymptotic zone of convergence (after Graziani, 2008). In the zone one, 

round off error and iteration error take over; zone two is appropriate zone for numerical 

modeling and mesh convergence test; and zone three is mesh sizes where the problem is under 

resolved.   

 Problem of PDE identicalness: a mesh convergence test has to be done on exactly 

identical differential equations which mean the exact same geometry, initial condition and 

boundary conditions. In that regard, implementation of boundary-fitted cells may cause problems 

of solving slightly different domains in a mesh convergence study (Wang et al., 2008). Other 

common problems in environmental fluid mechanics are cases where, with mesh refinement, a 

different physical problem is solved, like Large Eddy Simulation (LES) turbulence models 

(Roache, 1997).  

 Problem of order of accuracy of other pre/post-processing algorithm(s): any extra pre-

processed or post-processed value which is used in verification must be computed via a high 

order method. For example, in the case of Richardson Extrapolation of lid driven cavity flow 
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problem (example one below), since the formal convergence order of the Navier-Stokes solver 

we used is 2nd order, the interpolation of the fine results to the location of coarser grid points 

must be developed with a interpolation method of an order three or higher. Although this issue 

seems trivial, overlooking it may cause confusion in code verification activities. 

 Nature of integrated values: the ultimate goal of any verification study is uncovering bugs 

or weaknesses in the model. Along that line, any fragmented information on the convergence 

behavior would be more fruitful than the integrated information. For example, local values of 

velocity convergence will reveal more information than global values of the same phenomenon. 

Therefore, we suggest separate analysis of the boundary and inner domain values of interest for 

rigorous mesh convergence studies. Global metrics for mesh convergence studies are given 

below. 

 

7.2.3. Error measures and their qualification 

 When dealing with numbers we can identify them as being large or small. Arrays and 

vectors are functions of many elements but we need to measure their size - an index for them to 

be small or large. Norms are used as a measure in this context. Realizing that the size of a vector 

or matrix should depend on the magnitude of all elements in the arrays, we arrive at the 

definition of matrix norms. By definition, a norm is a single number that depends on the 

magnitude of all elements in the matrix. A norm of matrix v should satisfy the following three 

conditions: 

‖v‖ ≥ 0 and ‖v‖ if and only if v = 0        (7-1) 

‖cv‖ = |c|‖v‖ for any scalar c         (7-2) 
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‖v + w‖ ≤  ‖v‖ + ‖w‖ for matrices v and w       (7-3) 

The following three vector/matrix norms are commonly used and called the maximum norm 

(infinity norm), energy norm (second norm), and first norm (taxicab norm): 

L∞ = ‖v‖ = max |vi|          (7-4) 

L2 =
1

n
(∑ |vi|

n
i=1

2
)

1

2          (7-5) 

L1 =
1

n
∑ |vi|

n
i=1            (7-6) 

We can define v as any state variable of interest in fluid mechanics (velocity, pressure, depth, 

temperature, etc.) or the error between vnum and vexact, or error between coarse and fine solution 

of state variables |vcoarse − vfine|. L∞, Equation (7-4), is the most restrictive norm for mesh 

convergence studies, as it produces the "worst" situation in the domain so the lower 

"convergence rate" will be obtained by employing this norm. In contrast, L2 and L1 act as a 

"smoother" norms, so the convergence rates obtained via these norms are less restrictive than the 

convergence rate calculated via the infinity norm or even the original values of the state variable 

of interest. 

7.2.4. Observed order of accuracy 

 "Observed order of accuracy" is the actual order of accuracy delivered by a numerical 

solver (versus the "formal order of accuracy" which is the order of the employed numerical 

scheme). For the sake of simplicity, we assume cases in which a benchmark for error calculation 

exists. Calculation of the order of convergence in cases in which the exact solution is not 

available is conceptually similar and details can be found in Knupp and Salari (2003) or Roache 
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(2009). Let's assume a Taylor series expansion for the numerical solution to the discrete equation 

uh based on the grid spacing h, as h goes to zero: 

uh = uh|h=0 + h
∂u

∂h
|

h=0
+

h2

2

∂2u

∂h2
|

h=0
+ ⋯ +

hp−1

(p−1)!

∂p−1u

∂hp−1
|

h=0
+ O(hp)   (4-7) 

The above equation is the basis for calculating p (observed order of accuracy). As the mesh size 

tends toward zero, the higher order terms of error become negligible, therefore we may write: 

ϵh = Chp + O(hp+1) ≈ Chp         (7-8) 

where ϵh is the error on the mesh size h, and C is a constant which depends on the numerical 

method of discretization and other factors. If we repeat the calculation for mesh size of 2h we 

would have: 

ϵ2h ≈ C(2h)p           (7-9) 

eliminating C between the above two relation we can calculate "p" (observed order of 

convergence) between the two mesh sizes as follows: 

p =
ln(

ϵ2h
ϵh

)

ln(2)
           (7-10) 

This concept can be generalized to non-integer mesh refinement ratio r =
hcoarse

hfine
 as well. For 

more details and derivation, please see Oberkampf and Roy (2010), Chapters 5 and 8.  
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7.3. VAVUQ: Toolkit for Verification and Validation, and 

Uncertainty Quantification in Environmental-Fluid-Mechanics 

Simulations 

 To conduct code and calculation verification of models of interest in Environmental Fluid 

Mechanics, a Matlab code was developed at the Department of Civil and Environmental 

Engineering of the University of California, Davis. VAVUQ has a GUI (graphical user interface) 

with the capability of loading, visualizing and post-processing files in text, binary and excel 

format. The toolkit can be utilized for the following purposes: 

 Code and calculation verification studies, including: Richardson extrapolation, 

verification against a benchmark: MES, MMS, and Dense Mesh Solution or Cross-solver-

verification. VAVUQ is able to post-process results of structured (uniform and non-uniform) and 

unstructured meshes. In addition, this toolkit processes the verification in integrated (globally on 

all cells) and disintegrated domains (point-wise, inner, and boundary cells) and provides 

individual log of the verification for each part (please see examples one and two).  

 Model validation: VAVUQ calculates common metrics of quantitative model skill 

validation based on the numerical results and measured benchmark values: RMSE, Scatter Index, 

Bias Index and Coefficient of Determination (please see example three). 

 Visualization of the error distribution over the domain via high-order spline extrapolation 

(please see example four below). 

 Uncertainty Quantification: VAVUQ calculates the upper and lower limit of the 

numerical simulation error for 99% and 95% confidence in the results based on the Roache's 

Grid Convergence Index "GCI" (please see example five).  
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 VAVUQ is coded in the most general form and it can be employed for verification 

studies of any PDE of interest in water resource engineering including: Navier-Stokes Equation, 

Saint-Venant's Equation, Richards Equation, Burgers' Equation, etc. In the following sections, 

some examples of the application of VAVUQ are presented. 

7.3.1. Example one: Richardson extrapolation 

 A two-dimensional lid-driven cavity flow is a classical problem for code testing 

associated with Navier-Stokes solvers (Ghia et al., 1982). The problem domain and boundary 

conditions are straightforward. The standard case is a viscous fluid inside a square domain with 

Dirichlet boundary conditions on all sides, with three stationary sides and a moving lid (with 

velocity tangent to the side). The schematic of this physical set up is shown in the Figure 7-3. In 

this example, we solved a 2-D lid driven cavity flow with a commercial CFD code (Flow-3D). 

 

Figure 7-3. Schematic of lid-driven cavity flow (after Ghia et al., 1982) 

 We solved the flow with four different mesh sizes and conducted Richardson 

extrapolation on three state variables (pressure, x-wise velocity and y-wise velocity components) 

(Yuen, 2014). Given that local discontinuity may affect mesh convergence results, the study was 
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conducted for three categories: a) Inside the domain b) on the boundaries and, c) globally. Table 

7-1 shows the formal order of convergence of the pressure and the two velocity components 

inside the domain, on the boundary and globally produced by VAVUQ. The results of the mesh 

convergence study show that in the inner-domain cells the solver almost reaches 2nd order 

convergence in pressure and approximately p ≈ 1.7 in velocity simulation. However, in the 

boundary cells, the order of convergence dramatically drops to near zero. Direct implementation 

of velocity boundary condition on the boundary cells next to the lid explains why the lowest 

convergence ratio happens in lid-wise velocity component. Lastly, the global order of 

convergence is something in between the inner domain and outer skin of the domain.    

Table 7-1. Convergence rates of two dimensional lid driven cavity flow on the gird resolutions of ℎ4 = 92 ×

92; ℎ3 = 128 × 128; ℎ2 = 182 × 182 and ℎ1 = 256 × 256 and 𝑟12 =
ℎ1

ℎ2
;  𝑟23 =

ℎ2

ℎ3
; 𝑟34 =

ℎ3

ℎ4
. 

Refinement 

comparison 
Variable 

Inner Cells Boundary Cells Global 

𝑃(𝐿1) 𝑃(𝐿2) 𝑃(𝐿∞) 𝑃(𝐿1) 𝑃(𝐿2) 𝑃(𝐿∞) 𝑃(𝐿1) 𝑃(𝐿2) 𝑃(𝐿∞) 

𝒉𝟑 − 𝒉𝟐

− 𝒉𝟏 

Pressure 2.020 2.077 2.124 0.850 0.541 0.745 0.850 0.550 0.745 

𝑢 1.750 1.645 1.679 0.249 0.017 0.825 1.205 1.300 1.406 

𝑤 1.764 1.650 1.792 0.982 0.232 0.574 0.982 0.399 0.574 

𝒉𝟒 − 𝒉𝟑

− 𝒉𝟐 

Pressure 1.943 2.026 2.116 0.910 0.560 0.774 0.910 0.568 0.773 

𝑢 1.792 1.646 1.691 0.295 0.048 0.954 1.425 1.506 1.489 

𝑤 1.778 1.665 1.818 1.050 0.245 0.579 1.050 0.429 0.579 

 

7.3.2. Example two: mesh convergence test with known benchmark (MES) 

 In this example, VAVUQ is used to find the order of convergence of an ADR solver 

versus an analytical solution of advection reaction in tidal flow in a dead-end harbor. Details of 

the solution and implementation can be found in Zamani and Bombardelli (2014). 
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Figure 7-4. Numerical and analytical solution of concentration plume in a dead-end harbor 

subjected to tidal forcing (Zamani and Bombardelli, 2014). 

 

Figure 7-5. Mesh convergence study for four mesh sizes, tidal advection reaction of a pollution 

in dead-end harbor basin. 
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7.3.3. Example three: quantitative model skill assessment (validation) 

 In this case, VAVUQ is used for validation of a numerical simulation through 

comparison against laboratory measurements. The physical phenomenon is a two-phase flow of 

air-water mixture in hydraulic jump (Zamani and Bombardelli, unpublished). Figure 7-6 shows 

the profile of the free surface simulated with three different resolutions versus the measurements 

by Murzyn et al. (2007) at University of Southampton. VAVUQ calculated the numerical values 

in the positions as data points via a high-order extrapolation. Then, four common metrics of 

model validation were calculated to provide an objective comparison benchmark for comparison 

(Willmott et al., 2012; Zamani and Bombardelli, 2014). The metrics employed are as follows: 

Bias =
1

N
∑ (Mi − Bi)

N
i=1           (7-11) 

R2 = 1 −
∑ (Mi−Bi)2  N

i=1

∑ (Mi−B)2  N
i=1

         (7-12) 

RMSE = √
1

N
∑ (Mi − Bi)

N
i=1

2
         (7-13) 

SI(%) =
√1

N
∑ (Mi−Bi)N

i=1

2

1

N
∑ Bi

N
i=1

× 100        (7-14) 

where M refers to the results of numerical model value and B is the value corresponding to the 

experimental data (benchmark). This is a good example of how a finer mesh solution, which is 

converging, does not necessarily lead to better representation of physical phenomenon. Or in 

other words “verification” and “validation” are individual activities.  
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Figure 7-6. Numerical model of hydraulic jump: Modeled free surface profile versus laboratory 

measurements by Murzyn et al. (2007). 

Table 7-2. Metrics of models skill validation for three different simulation of 

free surface profile of air-water mixture in hydraulic jump. 

Mesh Size Bias 
Scatter 

Index 
RMSE R

2 

𝟓𝟎𝟎 × 𝟖𝟎 0.183 0.353 0.222 87.4% 

𝟕𝟓𝟎 × 𝟏𝟐𝟎 0.271 0.438 0.314 76.7% 

𝟏𝟎𝟎𝟎 × 𝟏𝟔𝟎 0.267 0.431 0.308 78.9% 

 

7.3.4. Example four: visualization of the results’ difference in various meshes 

 VAVUQ is able to manipulate numerical results coming from different mesh sizes and 

visualize the error. This visualization is valuable to the code/calculation verification process as it 

helps the modeler efficiently narrow down the problematic part of the modeling. Figure 7-7 
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shows the visualization of misfit (difference) between mesh sizes of 128 × 128 and 182 ×

182 for the simulation of pressure in lid driven cavity flow (Yuen, 2014).  

 

Figure 7-7. Difference in pressure numerical calculation between two different meshes sizes, for 

a lid-driven cavity flow. Most of the difference happens in the top right and top left corners next 

to the moving lid. 

7.3.5. Example five: numerical uncertainty quantification 

 By definition, uncertainty in numerical modeling has three components: uncertainty in 

initial and boundary conditions, "𝑈𝑖𝑛𝑝𝑢𝑡"; uncertainty in the mathematical model, "𝑈𝑚𝑜𝑑𝑒𝑙"; and 

uncertainty in numerical solution able to calculate the uncertainty in the numerical simulation.  

Then based on the most reliable results (finest mesh) it is able to calculate the lower and upper 

range of the numerical error. The value of these bounds of the error depends on several factor 

including: a) number of mesh refinements, b) required confidence interval (99% or 95%), c) 

mesh type (structured or unstructured), and d) the observed order of the convergence of the 

solver (Roache, 2009). In general, the safety factor "𝐹𝑆" for numerical uncertainty quantification 
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considered to be between one and five. And for uncertainty quantification, at least results of four 

different mesh sizes are needed. Figure 7-8 shows the relative misfit between the finest mesh and 

the second finest mesh in a vertical cross section of a 3D modeling of Gust Chamber (Yuen, 

2014, unpublished data). Figure 7-9 shows the upper and lower range of the numerical difference 

based on the Roache's Grid Convergence Index (GCI), both calculated via VAVUQ toolkit.    of 

the PDE "𝑈𝑛𝑢𝑚." The overall uncertainty can be computed as follows: 

𝑈𝑣𝑎𝑙𝑢𝑒 = √𝑈𝑛𝑢𝑚
2 + 𝑈𝑖𝑛𝑝𝑢𝑡

2 + 𝑈𝑚𝑜𝑑𝑒𝑙
2         (7-15) 

From the above components of the uncertainty, quantifying 𝑈𝑖𝑛𝑝𝑢𝑡 is out of the scope of this 

work. In turn, "𝑈𝑚𝑜𝑑𝑒𝑙" is within the scope of "model validation" not "model verification".  

However, VAVUQ is  

 

Figure 7-8. Pressure numerical solution difference between the finest mesh and the second finest 

mesh. 
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Figure 7-9. Upper and lower range of numerical calculation difference based of GCI for 

confidence interval of 99% and four mesh refinements (structured mesh). 
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Appendix of Chapter 7 

7-A. Snapshots from VAVUQ GUI  

 

Figure 7-10. Choose between Verification and Validation subroutines. 

 

 

Figure 7-11. Verification with and without known benchmark solution. 
 

 

Figure 7-12. Interpolation method for conversion of results to same grid points 
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Figure 7-13. Selection of output level of details. 

 

 

 

Figure 7-14. Confidence level for uncertainty quantification. 
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Chapter 8: Conclusions and Future Path of Research 

8.1. Final Words 

The research presented in this dissertation was about "reliable" modeling of 

environmental flows. A comprehensive framework for verification, validation and uncertainty 

quantification (VVUQ) of models of environmental fluid mechanics was developed. Recent 

techniques of VVUQ have been adopted from computer science and nuclear engineering fields 

into environmental fluid mechanics models to yield high-quality, reliable modeling of transport 

phenomenon. The rest of the research in this thesis discusses application of those methods 

towards improvement of reliability and efficiency of two-phase flow models of solid-water 

mixtures and air-water mixtures. I provide a brief chronological review of the research path of 

my PhD, followed by major conclusions of each chapter and trajectory for future works in the 

next paragraphs. 

A prelude on major scientific and industrial motivations of my research, and main goals 

of the dissertation was given in Chapter 1. Chapter 2 provided a literature review of the field and 

had two main parts. First was a review of methods and packages for analytical and numerical 

modeling of pollutant transport in the unsaturated zone, and second a critical review of current 

state of practice and knowledge gaps in wetland and tidal marsh environments. The former was 

published as the Chapter 68 in “Chow’s handbook of applied hydrology, Second edition” by 

Vijay P. Singh and the latter was a part of a review paper which was accepted for publication in 

the ASCE Journal of Hydrologic Engineering (written by ASCE-EWRI Wetland Hydrology 

Technical Committee). The section on the vadose zone transport reviews the fundamental 

equations of flow in unsaturated porous media. Then, a review of deterministic approaches for 

solving passive transport in vadose zone is given including analytical solutions and numerical 
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methods. Next, formulation of reactive transport and multi-domain transport in vadose zone is 

provided, followed by a comprehensive review of software packages for analytical and 

numerical modeling of solute transport in porous media. In the rest of Chapter 2 I reviewed 

sediment transport models for wetlands and shallow-water vegetated areas. I went through the 

hierarchy of sediment transport models based on number of dimensions, steadiness of equation, 

complexity of governing equations (fully dynamic wave, kinematic wave, and diffusive wave), 

turbulence closures, and the ability/quality of including vegetation in the flow solver.  

For future researches in the field of pollutant transport modeling in the vadose zone, I 

believe effects of micro-heterogeneity and upscaling techniques are at the frontier of the 

knowledge gap and need to be addressed towards better modeling of transport in the vadose 

zone. In turn, the future of wetland sediment-transport modeling can be improved by filling two 

knowledge gaps. First, we need a clear mechanistic understanding of the biochemical reactions 

of vegetation and bio-sources of sediment in wetlands. And second, upscaling techniques have to 

be applied to account for the effect of vegetation heterogeneity on the flow. 

Chapter 3 presented analytical solutions for verification of transport codes. All numerical 

codes developed to solve the advection-diffusion-reaction (ADR) equation need to be verified 

before they are moved to the operational phase. In this chapter, I initially provided four new one-

dimensional analytical solutions designed to help in code verification; these solutions are able to 

handle the challenges of the scalar transport equation, including nonlinearity and spatiotemporal 

variability of the velocity and dispersion coefficient, and of the source term. Then, I provided a 

solution of Burgers’ equation in a novel setup. Proposed solutions satisfy the continuity of mass 

for the ambient flow, which is a crucial factor for coupled hydrodynamics-transport solvers. At 

the end of this chapter, I solved hypothetical test problems for each of the solutions numerically, 
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and I used the derived analytical solutions for code verification. I provided assessments of result 

accuracy based on well-known model skill metrics.  

To improve the numerical solutions of the ADR equation for the objective of code 

verification in Chapter 3, I suggest two methods besides Method of Exact Solutions (MES). 

First, I strongly advocate using Method of Manufactured Solution (MMS). MMS is the most 

reliable method to verify all possible flaws and check all nonlinear terms in a discretization of a 

PDE (Roache, 2002 and 2009; Oberkampf and Roy, 2010). The second method to improve the 

benchmark solutions for code verification is the “Method of Nearby Problems” (MNP) (Roy et 

al., 2007; Oberkampf and Roy, 2010). Although this method is not as strong as MMS in 

generating benchmark solutions for verification of nonlinear terms, it has the practical advantage 

of preserving the natural scales of the problem for code and calculation verification purposes. 

Chapter 4 of my dissertation was on the comprehensive assessment of current methods of 

approximation of Einstein’s integral for total sediment discharge, in sequential and parallel 

computing. Einstein’s integrals constitute one of the most salient developments in theoretical 

sediment-transport mechanics. I reported a comprehensive analysis of the accuracy and 

computational efficiency of proposed methods for the calculation of the Einstein’s integrals. To 

the best of my knowledge, this comprehensive assessment had not been undertaken before for all 

ranges of Rouse numbers and bedload-layer thicknesses. I first determined the accuracy of the 

proposed methods through comparison against the results of a dense-mesh, high-order numerical 

integration technique. For an infinite series solution, a comprehensive study of accuracy versus 

number of terms in the partial sum was performed. Then, the CPU times of those methods over a 

full set of Rouse numbers and bedload-layer thicknesses are compared. Finally, parallel versions 

of the methods were presented and their parallel efficiency was assessed. Based on the analyzed 
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criteria (accuracy, convergence, CPU time, and parallelization capability) I evaluated the overall 

efficiency of the methods. 

To improve the former methods of I discussed in Chapter 4, I suggest techniques to 

improve the speed of convergence of an infinite series. To that end, I think generalized Shanks 

transformation can be employed (Shanks, 1955; van Dyke, 1975). The second technique which I 

think will provide promising results – for explicit closure for an infinite series – is Richardson 

Extrapolation (see Chapter 8 of Bender and Orszag, 1999; Weniger, 2003). The other drawback 

of former methods which might be improved is finding analytically remedies for singularities 

such as the work by Srivastava (Abad et al., 2006).  

Following the research of Chapter 4, I developed four new methods for the calculation of 

Einstein’s integrals in Chapter 5 of this dissertation. The first two involve numerical strategies; 

the third is based on a series expansion, and the fourth involves a semi-analytical approach. The 

first method is an adaptive numerical-integration approach using Gauss-Kronrod quadrature and 

multi-step refinement. The second method is a novel numerical trick that recycles computational 

values and that provides a 30% increase in efficiency. Third method is based on asymptotic-

series expansions of Einstein’s integrals, which performed well for finer particles in suspension 

(small Rouse numbers); however, results were less precise for coarser particles (high Rouse 

numbers). Fourth, I derived a new semi-analytical solution utilizing hypergeometric functions 

with corresponding numerical methods to evaluate the semi-analytical solution. All of these new 

methods were benchmarked on their accuracy, CPU time, and parallelization performance with 

model skill assessment techniques. The best overall outcome was by nested Gauss-Kronrod 

quadrature. 
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Although the adaptive integration (nested Gauss-Kronrod) showed remarkable efficiency 

in both sequential and parallel computing, I think there is still way to improve the efficiency of 

numerical integration of Einstein’s integrals. Designing a special quadrature according to 

behavior of integrands of Einstein’s integrals would be the ultimate step forward for fast and 

accurate integration (Davis and Rabinowitz, 2007). Mathematical details of devising a 

quadrature for a function can be seen in Kythe and Schäferkotter (2004), and Davis and 

Rabinowitz (2007). 

Chapter 6 of my dissertation is on two-phase flow of air and water in hydraulic jumps. 

Hydraulic jump with bubbly two-phase flow and fluctuating free surface is a complex 

phenomenon that has important applications in industry and environmental fluid mechanics. 

Previous studies assumed advective-dispersive character to elucidate distribution of void fraction 

in the hydraulic jump. With that means, an analytical solution derived to describe distribution of 

air bubbles in hydraulic jump. In spite of the simplifying assumptions, agreement between this 

analytical solution and lab measurements is confirmed in couple of experimental studies. In this 

chapter I enhanced the analytical solution of the void fraction in the hydraulic jump. I consider 

the buoyancy effect on the air bubbles and analytically solve the scalar transport equation for the 

nonlinear bubble rise velocity. The new analytical solution was validated versus four datasets 

measured by Chanson and Qiao (1994), and Chanson and Brattberg (2000), Murzyn et al. (2005 

a and b) and Chanson and Gualtieri (2007). The comparisons reveal an excellent agreement 

between derived analytical solution and measurements in the lower region. Then, I used the new 

empirical data sets to evaluate former analytical solution which was suggested for the air 

distribution in the upper region of hydraulic jumps. At the end of the chapter I developed a new 
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empirical-analytical relation for defining the air mass entrainment and detrainment in the 

hydraulic jumps and validate it through the experimental data. 

The future of this research depends on more accurate understanding of the phenomena. 

Free surface two-phase flow of air bubbles and water is a very complex interaction of turbulence, 

surface tension and nonlinear waves. Those factors made measurements harder and less accurate 

compared to that of single phase flows (Chanson, 2009). Given reliable lab measurements of 

flow and air concentration, analytical descriptions of air concentration inside hydraulic jump can 

be improved with new methods of including variable velocity in the analytical solutions. 

Example of those methods – based on perturbation technique – can be seen in the work of Liu 

and Nayamatullah (2014). 

Chapter 7 is on using Software Quality Assurance (SQA) and Verification, Validation 

and Uncertainty Quantification (VVUQ) towards development of a more reliable modeling 

product. I introduce an open-source, user friendly, numerical post-processing software to assess 

reliability of the modeling results of environmental fluid mechanics' codes. Verification and 

Validation, Uncertainty Quantification (Davis-VAVUQ), is an open-source toolkit which is 

developed for general V&V proposes. The package is composed of all necessary routines for 

code and solution verification, quantification of uncertainty in numerical discretization, and 

quantitative model skill assessment. In this work, The VAVUQ implementation of V&V 

techniques and user interfaces would be discussed. VAVUQ is able to read Excel, MATLAB, 

ASCII, and Binary files and it would produce log of the results in txt format. Next, each 

capability of the code is discussed trough an example: First example is a solution verification of 

a 2D Navier-Stokes solver via Richardson extrapolation. Second example is a code verification 

of a sediment transport code via MES. Third example is a validation of two-phase free surface 
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flow in hydraulic jump via common metrics of model skill assessment. Fourth example is error 

visualization for lid-driven cavity flow of example one. Finally the fifth example is uncertainty 

quantification in the numerical discretization of pressure in lid-driven cavity flow. At the end, I 

discussed practical considerations and common pitfalls in interpretation of V&V results. 

In overview, after a literature review of pollutant transport in the vadose zone and of the 

sediment transport in wetlands (Chapter 2), my PhD dissertation had two main themes: First, 

three chapters were on two-phase flow of air-water mixture and solid-water mixture. I improved 

the efficiency and accuracy of sequential/parallel methods of computing total sediment discharge 

with Einstein’s method. I designed analytical solutions and empirical regression based solution 

to elucidate 2D distribution of air bubbles in hydraulic jumps. Second, I devised analytical 

solutions of nonlinear and viable coefficient passive transport equation for verification of 

solvers. In addition, I developed a package of auxiliary tools for VVUQ in computational 

mechanics. I employed my software for verification and validation of my mathematical models 

in this research.  
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Appendix A: Using Software Quality and Algorithm Testing to 

Verify a One-dimensional Transport Model
1
 

A.1. Introduction  

In this paper, we describe our approach and experiences developing a software verification 

framework for a one dimensional (1-D) transport model of advection, dispersion and reactions or 

sources (ADR). We begin by describing the motivation and requirements for testing. Our 

acceptance criteria are driven by the requirements for the model, but are crafted according to 

principles from both the software and numerical testing fields. We then describe the components 

and implementation of the test suite, emphasizing the incremental nature of the tests, quantitative 

criteria for testing, and the similarities and tension between the silent, automatic perspective of 

software testing and the verbose, graphical outputs required for public reporting of numerical 

verification results.  

The testing framework described in this paper was developed as part of a project to create a 

new transport module for the Delta Simulation Model 2 (DSM2) (DSM2, 2011) a 1-D 

hydrodynamic and transport model for flow and water quality in the Sacramento-San Joaquin 

Delta. Our target problems include river and estuary advection, and 1-D approximations of 

common mixing mechanisms and source terms associated with conservative and non-

conservative water quality kinetics including sediment transport. The transport code is described 

briefly below followed by the development of the testing framework. The two are tightly coupled 

                                                           
1
 This appendix was published as: Ateljevich, E., Zamani, K., Bombardelli, F. A., Anderson, J. (2011). 

Using software quality and algorithm testing to verify a one-dimensional transport model. In ASCE 

EWRI World Environmental and Water Resources Congress, Palm Springs, CA.  
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-- since the transport module was created from scratch, it provided an opportunity to structure the 

code to be rigorously tested.  

The model used to illustrate the testing framework is based on the 1-D transport equations in 

conservative form: 
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 where x is the distance, t is time, A is the wetted area, C is the scalar concentration, u is 

the flow velocity, K is the longitudinal dispersion coefficient, and R is the source term 

(deposition, erosion, lateral inflow and other forms of sources and sinks). Equation (1) describes 

the mass conservation of a pollutant in dissolved phase, or suspended sediment away from the 

streambed. 

The problem domain includes estuarine river channels and even some small open water 

areas roughly approximated as channels. The main transport process is advection, and the mixing 

mechanisms we anticipate are turbulent diffusion, gravitational circulation, and shear dispersion 

(Fischer et al., 1979; Abbott and Price, 1994). We anticipate the shear dispersion to dominate 

over the turbulent diffusion. We also expect the gravitational circulation to exert an important 

role in mixing. We additionally contemplate significant, non-linear source terms from sediment, 

chemical and biological processes, though none of the processes are so quickly varying as to 

constitute truly stiff reactions. 

Our algorithms include an explicit scheme for advection based on a finite-volume method 

(FVM) discretization and the Lax two-step method (Colella and Puckett, 1998) with van Leer 

Time evolution Advection  Dispersion 

  

Source/Reaction 
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flux limiter (Saltzman, 1994); it also includes an implicit, time-centered Crank-Nicolson scheme 

for dispersion (Fletcher, 1991). The advection and reaction solver are coupled as a predictor 

corrector pair, and dispersion is implemented separately using operator splitting.  

 

A.2. Testing Requirements 

The tests described in this paper are all designed around suitability of the solver for estuary 

transport problems. The required accuracy on target modeling applications and choice of 

algorithm influence the testing requirements and the components of our algorithm test suite.  

The scales of estuary transport determine the range of relative strength over which we test 

advection, diffusion and reactions, which is mostly intermediate Peclet number flow. Our target 

accuracy is strict second order for individual operators and near second order for the algorithm as 

a whole. Second order allows a coarser discretization for a modest increase in work per volume 

of fluid, which is efficient. A second-order algorithm also gives us a buffer of accuracy as details 

like networks of channels and coarse boundary data are added. At the time of writing this paper, 

our splitting is first order Godunov splitting. Some authors (e.g. Leveque 1986) have observed 

that near second-order accuracy can be achieved with first order splitting, and the design of the 

tests probes this point.  

Two features of the algorithm feature into the design of our test. First, the scheme requires a 

flow field (flow discharges and flow areas) that preserves mass continuity. In some cases, tests 

from the literature were written in non-conservative or primitive form and had to be reworked in 

conservative form. Second, we employ operator splitting and wanted to exercise the equations 

with and without known vulnerabilities (such as time-varying boundaries and nonlinear source 

terms) of this class of algorithm. 
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A.3. Testing Principles 

Flow and transport codes inherently comprise both numerical algorithms and pieces of 

software. Well-developed testing literature exists for both. Oberkampf and Trucano (2002) 

describe some elements of software quality engineering (SQE) in the context of numerical 

verification, and note some cultural reasons why it is seldom implemented.  

Figure 1 is adapted from this work and depicts the relationship between software testing 

components and algorithmic testing such as convergence tests. We regard numerical verification 

as our key responsibility and the numerical verification toolset as our greatest assets. 

Nonetheless, we also comment below on how these tools feature as tests and how, at times they 

seem in tension with the principles of good software testing. 

 

Figure A-1. Relationship between software testing components and algorithmic testing.  

Software testing principles. The principles that we want to emphasize are: 
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1. Testing should be automatic and continuous. 

2. The approach should foster exact specification of every unit of code. 

3. Testing should provide assurance of whether a set of specifications is met. 

One goal of tests is that they be a continuous assessment of the code. The entire testing 

system is a regression suite that establishes a gauntlet through which future code changes must 

be passed. A consequence of automation is that tests must be phrased in terms of binary 

assertions, true and false statements that can be tested without human intervention and that 

reveal whether the aspect of the code under consideration is correct. Convergence criteria are a 

rigorous basis for assertions, either by requiring strict convergence criteria (“the algorithm is -

second order accurate in time and space”) or a regression criterion (“convergence will not get 

any worse than last time the code was tested”). 

The software testing literature further distinguishes between unit tests of atomic routines and 

system tests of larger subtasks. For example, the evaluation of a gradient might be a unit of code 

and it would have a unit test. Convergence tests and other algorithm tests are examples of system 

tests. 

The unit testing point of view is that code must be exercised over a range of inputs that 

covers every line. For instance, to test a gradient routine with a slope limiter, a developer would 

want to cover: 

1. smooth cases in the middle of the mesh. 

2. behavior near the edges of the mesh, where one-sided differences may be used instead of 

central differences. 

3. cases that test the limiters with steep or zero gradients in both directions. 



249 
 

Any system test will certainly exercise the gradient code in the middle of the mesh, which in 

any event can seldom be wrong without being obvious. However, system-level tests might miss 

the more unusual cases. For example, a convergence test may miss a bug in the limiter for the 

case of steep decreasing slope for several reasons. First, convergence is often assessed with 

limiters turned off, as they are locally order reducing. Second, it is hard to fiddle with the 

problem in just the right way to make sure the left, right, and center cases of the gradient limiter 

are all triggered. This is particularly true when trying to exercise other units of code at the same 

time – parameter choices made to fully exercise gradient limiter the may lessen the coverage of 

another unit. 

Although the software and algorithm tests are separate, information discovered during one 

test can aid in the further development of another test. We began our coding with near-100% 

coverage by unit tests. These tests were part of the debugging and development processes. Later, 

discoveries made in the context of system tests were analyzed and pushed back into unit tests 

whenever possible. The unit test was expanded to verify that the newly discovered error from the 

algorithm test was fixed and does not reoccur. This flow of information is indicated in Figure 1.  

One example of this accumulation of tests is our unit test for fluid mass conservation. The 

observation that our algorithm requires accurate mass conservation of the fluid came from the 

tidal test case. The flow field we used for this case was adapted for 1-D from Wang et al. (2009). 

The original solution was based on a linearization and is not mass conservative in 1-D, causing 

significant problems with transport convergence. Once this requirement was discovered, a unit 

test was introduced into the suite to check this property for any flow field. At the same time, we 

found we had to tailor some of the analytical results we were using for other tests. 
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A second example involved periodic flow. Our uniform flow convergence tests originally 

had a reversal of flow midway through the test. The out-and-back setup is convenient for 

advection because the initial condition and final concentration field are the same. We also 

believed we were exercising the code in two directions. In fact, an error accumulated in the 

positive direction was cancelled by the return pass in the negative direction. We passed the 

periodic test but failed analogous unidirectional tests. Originally, the discovery was fortuitous, 

because the unidirectional test was “unofficial”; now we test directional dependence using a 

combination of periodic and unidirectional flow 

Numerical verification and algorithmic testing.  

An important category of a system test includes the algorithm tests normally associated with 

verification of numerical codes. Algorithm tests serve multiple purposes. They are intended in 

part to discover bugs and in part to convince ourselves and others of the merit of the algorithm to 

solve the equations to which it is directed.  

One of the well-recognized and the standard verification methods of computational fluid 

dynamics codes is based on the notion of mesh convergence (Roache, 2009). Mesh convergence 

for models that solve partial differential equations is assessed by successively refining the spatial 

and temporal discretizations. As the mesh is refined, the error estimates (for us usually an L1 

norm, or sum absolute error) should decrease at a convergence rate that is algorithm dependent 

(Leveque, 2002). A second order accurate algorithm, denoted O(2) or O(∆t2, ∆x2) should have 

its error go down proportional to the square of the step sizes. By checking convergence, we 

ensure that the model is consistent with an underlying formulation rather than numerical 

artifacts. Failure to converge usually represents either a bug in the implementation or a difficulty 

of the algorithm on a class of problem. 
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The verification toolkit is largely targeted at providing test problems and methods to 

estimate error in situations where an analytical solution is not available from the literature. When 

nonlinearity, spatially varying coefficients and other complexities are introduced, tricks must be 

introduced to obtain good test problems.  

Depending on the context, error and convergence are usually estimated one of two ways: 

 When successive refinements are assessed relative to an analytical solution, we 

have a direct estimate of error and the ratio allows us to estimate a convergence 

rate. 

 When successive grids are compared to one another, we can invoke the concept of 

Richardson extrapolation and Grid Convergence Index (Roache, 2009) to 

indirectly estimate error and convergence even when no solution is available.  

In practice, we found the Method of Manufactured Solutions (MMS, Roache, 2009) was able to 

supply analytical verification problems for all the cases not covered directly in the literature.  

At least in theory, convergence rates can be stipulated as a project requirement and 

software testing assertion. Convergence rates, not absolute error, are what numerical methods 

tend to promise and they are very useful in the discovery of code defects. Still, the main goal in 

practice is a more accurate solver. Therefore, the superiority of methods should be assessed 

based on both convergence and accuracy (Roache, 2009).  

The convergence ratio in a very coarse grid oscillates around its main value; as the grid 

size is refined, convergence becomes monotonic until the mesh size reaches a point where the 

machine precision overtakes the truncation error of the numerical scheme. At this point error 

norms do not change, and the convergence rate is zero. Convergence ratios should be checked 

for intermediate grid sizes, preferably at the scale of the real phenomenon and discretization used 
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in practice. In the conclusions, we describe the challenge of dealing with tests that returned failed 

results when the convergence was just slightly below the target level.  

As acceptance tests, algorithm tests should be conducted over a range of problems that 

exercise the major physical features that are to be modeled. The community may help with this 

by providing benchmarks, but we were unable to ascertain that any widely accepted benchmarks 

for a 1-D transport code. As system tests we believe that the tests should be glass box, targeting 

known or discovered vulnerabilities of the algorithm. The ability to use remote and active 

boundaries in our convergence tests, for instance, is specifically motivated by known problems 

related to operator splitting. 

Finally, distinction might be made between the reportable set of algorithm tests and other 

types of system tests aimed at defect discovery. Important examples of the latter are tests of 

symmetry, such as a whether a 1-D model gives the same result when the upstream and 

downstream boundaries are swapped. Others are positivity preservation of constituents, mass 

conservation and oscillation detection. In the case of positivity preservation and mass 

conservation, it is typical to abstract this code for use both in the test suite and in the driver as a 

user option. 

Overall, we agree with the conclusions of Salari and Knupp (2000) that system tests – 

particularly convergence tests – expose bugs well, particularly when an attempt is made to test 

symmetrically and over special cases. We feel that the incremental approach we describe in the 

next section further helps to isolate problems. Nevertheless, a close reading of Salari and Knupp 

(2000) does reveal that the convergence tests sometimes initially failed to pick up bugs that are 

exactly the sorts unit tests might catch (e.g. gaffes in corner cells).  
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A.4. Algorithm Test Suite Description 

The algorithm testing used an incremental building block approach that adds complexity on two 

major dimensions (Figure 2): 

 Operators: The tests were developed for a one-dimensional transport code that will be 

applied to an estuary. Thus the key processes tested are the operators of advection, 

dispersion and reaction (e.g. growth or decay). These are tested individually, then in 

combinations of growing complexity 

 Flow field and physical setup: Our fixtures included the following cases 

- Uniform flow: This test involved uniform steady flow on a channel, sometimes 

with a reverse in direction halfway through the simulation. The mass transported 

is Gaussian. The suite includes advection, diffusion and reaction alone and in the 

combinations indicated in Figure 2. 

- Tidal flow: This test used a tidal flow field from Wang et al. (2009), adapted to be 

1-D and mass conserving, to test advection and reaction. The test itself has no 

analytical solution, but is periodic in a way that is not symmetric. 

- Spatial variation (Zoppou): This test is due to Zoppou and Knight (1997) and 

includes velocity proportional to distance and diffusion coefficients proportional 

to distance squared. This test had to be modified for a conservative fluid flow. 

 Boundary complexity: For the uniform flow and Zoppou tests, we include cases where 

the boundary is far away from the transported mass and cases where the boundary is 

actively part of the problem. This allows us to determine the extent to which convergence 

rates are affected by boundaries. 
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 Nonlinearity: In our final case, which uses the Zoppou and Knight (1997) fixture adapted 

using MMS solution, we include a non-linear source term. 

 

Figure A-2. Transport algorithm testing with incremental complexity. 

These tests were conducted for a range of parameter values. Typically the Courant 

number (a measure of numerical stability of the algorithm), domain length, and dispersion and 

decay coefficients were fixed, and the grid spacing and time steps were adjusted to maintain the 

same Courant number. Detailed descriptions of the tests are beyond the scope of this paper and 

will appear in a planned journal article. 

 Our incremental suite can identify with good precision exactly which added layer of 

complexity causes a drop in order of accuracy. For instance, our example algorithm performs 
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well when boundaries are remote, but drops to a convergence rate of O(1.4) or so in the presence 

of active boundaries.  

The test architecture was implemented using the FORTRAN Unit Testing Framework 

(FRUIT) for logging assertions and counting pass rates. FRUIT is one of the few test frameworks 

available in this computer language. FRUIT does not appear to adhere to industry practices in the 

way it formats results (e.g., the JUnit format), but provides a variety of predefined assertions.  

Both the system tests and the unit tests were developed with FRUIT, and the granularity 

for unit tests is one unit test module per solver module, one unit test routine per solver routine. 

Our code was designed for testing. In particular, computational routines were crafted according 

to the following three architectural considerations: 

 We isolated any computations that could be described with easy-to-understand names, with 

the caveat that we did not want to degrade performance or prevent vectorization. Our 

routines tend to be simple, homogenous calculations over arrays (such as calculating the 

gradient over the entire domain) rather than long sequences of instructions on individual 

cells. 

 Data are passed to computational routines by argument list. This leads to longer argument 

lists, but makes the description of input and output much surer – tests are much harder to 

program when data required by the routine is passed in “behind the scenes” using 

imported modules. 

 The design allows us to dynamically swap in new sources, flow fields and boundary 

conditions without halting the tests or recompiling the code. This ability required 

function pointers and abstract interfaces, a relatively new FORTRAN feature. 
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A.5. Challenges and Issues with Tests 

The key issues associated with unit tests were different than those associated with algorithm 

tests. The main challenge with unit tests seems to be culture: generating the will to write them 

and the skills to write them in a way that covers the unusual cases. Without the aid of special 

coverage tools, test coverage is up to the diligence and craftiness of the developers. 

For algorithm tests, nominally we sought a second order convergence rate. A 

convergence criterion seemed in-keeping with the way numerical algorithm accuracy is 

expressed and is less arbitrary than a hard-wired, scale-dependent absolute standard. Early on, 

however, it was clear that the normal noise from observed convergence rates could spoil even a 

success when the rate is expressed as a hard assertion. It is challenging to deal with situations 

when a convergence test fails with a value close to the criterion, e.g. 1.97 instead of 2.0, which 

surely would pass a graphical acceptance test. This issue can be exacerbated by sensitivity to 

problem parameters. 

When one of our tests did not cleanly converge at the specified level, we generally either 

fixed the code successfully or we searched for bugs until both of the following things happened: 

 Convergence properties corresponded well to the expected strengths and 

limitations of our algorithm; and 

 The solution was accurate: convergent above first order, excellent qualitative 

results when compared graphically to solutions and with relative errors of a 

hundredth of a percent. 

We have done our best to support our claims when attributing any convergence deviations to 

specific algorithmic or problem quirks. Our incremental suite can identify with good precision 
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exactly which added layer of complexity causes a drop in order of accuracy. Where we intend to 

relax convergence criteria, we are in the process of changing our assertion criteria to an absolute 

accuracy requirement coupled with a regression standard for convergence. In our numerical 

code, cases with multiple operators and very active boundaries are the only ones in which we 

currently expect such a compromise.   

Finally, there is sometimes a tradeoff between the requirements for verification and best 

practices for error discovery. Part of the community verification process for transport codes is 

the presentation of results in graphical format. Accommodating this type of display requires 

output beyond mere reports of assertion failures. We added the required verbosity option, but 

graphical interpretation plays no part in our regular testing practices other than as a debugging 

tool. 

 

A.6. Conclusions 

Our test suite succeeds both in finding bugs and in elucidating the strengths and weaknesses 

of a 1-D transport algorithm. We feel that our test suite is parsimonious and reasonably complete 

for tidal applications. Applying the framework to our own code, we have been able to work 

towards second order convergence for many tests and to isolate problems in special cases. 

We believe the essential ideas in our approach are these: 

 Codes must be written in a modular format with software testing in mind in order to 

apply the principals of software quality engineering. Each piece of code must have a clear 

purpose and criterion for success. 



258 
 

 Tests should be silent an automatic. Test criteria must be binary assertions. Assertions are 

written to provide more information than simply assessing graphs of expected vs 

computed results, however we include verbosity options to export data for graphs. 

 There is a symbiotic relationship between software and algorithm tests; Code bugs 

detected with algorithm tests can lead to development of additional software regression 

tests to verify that a bug is fixed and to provide assurance that it does not reoccur. 

 Convergence tests are the principal tool used in the algorithm verification literature. Our 

suite includes convergence tests on a combination of analytical problems from the 

literature and a manufactured solution using MMS.   

 When convergence criteria are implemented as hard test assertions, account must be 

made of the small random noise typical of convergence results. 

 Incremental addition of complexity helps to isolate the causes of problems and to 

establish that lower complexity solutions are correct. 

 Symmetry and directionality tests help discover errors that may be hidden by the setup of 

the problem. 

 The software quality and algorithm testing framework described in this paper provides a 

useful starting point for researchers and practitioners wanting to verify transport codes. Having 

this rigorous test suite allows developers (1) to verify that each piece of code works properly 

both individually and as a combined system, (2) to ensure additions to the code do not adversely 

affect existing code, and (3) to find and fix code bugs that might otherwise be missed. Providing 

the end user with test results and the ability to rerun the tests themselves, assures the user that the 

code performs as expected and quantifies the code’s strengths and weaknesses.  
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Appendix B: Hydrogeologic Characterization
1
 

 

B.1. Introduction  

Understanding groundwater for engineering, agricultural or environmental activities 

require sufficient knowledge of subsurface geological and hydrological characteristics. 

Difficulties arise quantifying hydrogeological processes mainly due to incomplete 

characterization of subsurface properties at the required spatial scale.  This scale ranges from the 

order of tens of meters for geothermal applications to kilometers for contamination problems to 

hundreds of kilometers for regional groundwater sustainability studies.  Historically, many 

subsurface characterization techniques in hydrogeology were developed originally for petroleum 

and mining industries and subsequently adopted for groundwater engineering. Detailed 

references from these and related fields about hydrogeologic characterization exist, e.g., 

Charbeneau (2006), EPA (2015), Fetter (1999), Mitchell and Soga (2005), Rubin and Hubbard 

(2005), Todd and Mays (2005). The purpose of this chapter is to give a summary overview of 

some of the practicable techniques to characterize geological facies, structure, and permeability, 

as well as groundwater occurrence hydraulic head, and flow velocity. Due to scope restrictions 

many related techniques such as ground-penetrating radar, self-potential, remote sensing and 

GRACE data, inclinometry, environmental tracers, and seismic techniques are not covered here, 

and the treatment is restricted to saturated subsurface materials. 

 

                                                           
1
 This appendix was published as a book chapter: Zamani, K., Ginn, T.R., Nassar, M.K. (2016) 

“Hydrogeologic Characterization”, Chapter 47 in “Chow's Handbook of Applied Hydrology, Second 

Edition” by Ed. Vijay Singh, Published by McGraw-Hill Education.  
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B.2. Borehole Samples and Groundwater Monitoring Wells  

Drilled wells are main source of subsurface hydrogeological information. In general, 

location selection, design, well drilling, and sampling phases of wells have to be conducted 

based on the purpose of the well, geologic structure of the site, expected groundwater occurrence 

and contamination, and location of the site. Drilling techniques used for well construction 

include hollow-stem augers, solid-stem augers, water/mud rotary, pneumatic rotary, sonic 

(vibrator), direct push and casing or cable. While hydraulic/pneumatic rotary and cable tool are 

the more common approaches for well construction, the investigation borehole drilling methods 

useful for obtaining core samples are hollow-stem auguring, rotary drilling, and direct push 

sampling. At contaminated sites, well casing and screens must be chemically compatible with the 

substances being monitored.  For more information for on monitoring well design, drilling, 

installation and maintenance see ASTM D 5876 and 5978 standards (ASTM, 2011-2012).   

B.2.1. Investigation borehole drilling 

Site investigation with boreholes provides one-dimensional information on geologic 

structure and material properties via collection of core samples (e.g., ASTM, 2012a; Hunkeler, 

2010). Rotary boring is a method of advancing a borehole in both rock and sedimentary 

formations up to depths of 350 meters, and generates core samples of diameters 10-25 cm.  The 

drill shaft and bit are advanced within a metal core barrel that is advanced in sections to provide 

a temporary or permanent borehold casing.  In direct rotary drilling, drilling mud or fluid is 

pumped down the drilling core to the bits and brings up the cuttings to the surface.  In reverse-

circulation rotary drilling, used for larger boreholes, the drilling fluid is pumped down the 

annulus between the borehole and the casing and returns through the drill barrel.  This provides 
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the advantage of positive pressure to maintain the stability of the borehole during drilling. The 

method is called air-rotary drilling if instead of water, compressed air is being used. Subsurface 

materials returning to the surface with the drilling fluid provide qualitative if disturbed sample 

that can be used to characterize strata at depth.  To acquire core samples, the drilling rod is raised 

and the drilling shaft and bit is replaced with a core sampler that is an inner bar. Some advanced 

bits are also able to obtaining a core sample when they are used for drilling. Disadvantages of 

this method compared to auger drilling and direct push techniques include potential 

contamination by drilling mud/fluid that may impact groundwater chemistry, and the relatively 

higher cost and infrastructure required. 

Auger boring involves a spiral drill (augur) and is commonly used in relatively shallow 

and unconsolidated formations to depths up to 100 m (e.g., Hackett, 1987).  A conventional 

auger would bring materials to the surface generally disturbed.  The hollow-stem auger involves 

placement of the spiral drill inside a metal barrel, and core samples can be obtained as with 

rotary rigs by retrieving the drill and temporarily replacing it with a single or double sampling 

core. Advantages of this method include no involvement of drilling mud/fluid, lighter 

infrastructure and faster sampling at lower costs than rotary methods.  Direct-push sampling is an 

even lighter-footprint approach that involves driving a metal barrel into the subsurface often 

using high-frequency hammering or vibration.  Core sample retrieval may be done continuously 

using this method, by driving core barrel segments that are retrieved, or at intervals wherein a 

driven penetration tip is replaced at intervals with a segment of sample core barrel that is 

retrieved after it is driven till it is filled.  Advantages of this method are the light equipment and 

rapid advancement while disadvantages include the small diameter core samples obtained and 

the requirement for penetrable subsurface materials. 
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Percussion boring (or cable-tool drilling) is a method in which soil and rock formations 

are broken by repeated blows of heavy chisel or bit hanging from a cable or drill rod. A steel 

casing is driven into the borehole behind the bit utile the rock formation is reached. when the 

bottom of the hole is filled with broken rocks and sediments, water is added to the hole, if not 

already below the water table and the slurry of pulverised material is removed with bottom-

loading bailer. An advantage of percussion drilling is unlike rotary drilling, no drilling fluid/mud 

circulated through the well, hence, induced contamination issue does not exist. The other 

advantage is percussion drilling is suitable for remote location due to low fuel consumption and 

small needs for water. This method is generally slower than other alternatives drilling 

techniques, however, the drilling equipment are less expensive than rotary methods (ASTM, 

2012a).    

B.2.2. Cone penetrometry, permeametry, and electrical conductivity logging 

The static penetration or cone penetration test (CPT) is a method to determine 

geotechnical properties of relatively shallow subsurface materials and to delineate stratigraphy of 

fine sand, clays and organic soils in particular (e.g., Rogers, 2006). The standard test apparatus 

consists of a still cone with an apex angle of 55 to 60° and cross-section area of 10 cm
2 

(other 

variations exist) that is driven at a speed of 1-2 cm/s while the tip resistance 𝑞𝑐 and friction 𝑓𝑐 are 

recorded as the instrument moves down at intervals which can be as small as 5 mm. Generally, 

two types of friction-cone penetometers are used to measure 𝑞𝑐 and 𝑓𝑐: mechanical and electrical, 

the latter provides more continues profile compare to the former (cf. below, e.g., Harrington and 

Hendry, 2006). Several empirical curves that are useful in estimating the properties of subsurface 

have been suggested for the point resistance 𝑞𝑐 and the friction ratio 𝐹𝑟, defined as the ratio of 

frictional resistance over cone resistance (e.g., Lunne et al., 1997, ASTM, 2012b). Some 
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electrical CPT has passive pressure transducer to record water pressure that is termed piezocone 

penetration test or “CPTU”. Advantages of this technology are low-cost and rapid 

characterization of strata and resistive-force of geomaterials; disadvantages include indirect 

relation of the measured quantity to hydrogeological properties and penetrometer blocking by 

strongly consolidated or hard-rock materials. For more information on conduction and 

interpretation of CPT for site investigation see ASTM (1995). 

Butler and co-workers have extended the passive measurement of hydraulic pressure 

using direct-push equipment classically associated with cone penetrometry as done in the CPTU 

to active permeametry by inducing a hydraulic pressure at the porous cone tip and measuring the 

resulting pressure at different distances along the pushed shaft (Butler et al., 2002; 2007; Dietrich 

et al., 2008; Zshornack et al., 2013).  This technique, termed DPP for direct push permeametry, 

measures the resulting pressure at can yield data on vertical variations in hydraulic conductivity 

with a resolution scale of 0.4m vertical separation for conductivity values associated with aquifer 

materials.  The advantages of this technique are the low cost and minimal disturbance of the 

subsurface with high-resolution data.  Disadvantages include penetrometer/permeametry refusal 

in tight materials, errors induced in the presence of very thin (less than 0.5m) layering structure 

and errors associated with bypass flow up along the penetrometer shaft; however these latter 

errors can be controlled by careful push strategies that take into account the structural properties 

expected to be encountered in the materials (e.g., Zshornack et al., 2013).  Chapuis and Chenai 

(2010) provide a list of improvements derived from a geotechnical context for the hydrogeologic 

extensions of direct-push technology including using a cone tip that is the same or smaller 

diameter than the shaft in order to minimize bypass flow, using shape factors in order to more 

accurately determine the local conductivity values, and allowing sufficient time for hydraulic 
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equilibration to be attained prior to the collection of pressure data for identification of 

conductivity. 

Direct push electrical conductivity logging is an alternative direct push technology that 

involves driving an electrical conductivity meter at sequential depths to obtain a vertical record 

of subsurface electrical conductivity.  The device involves a metal rod with a pair of electrodes 

to incur an electrical current and two inner electrodes used to monitor the resulting voltage (e.g., 

Harrington and Hendry, 2006; Hunkeler, 2010).  The advantages of this characterization 

approach are that electrical conductivity reflects water content and material type, with silts and 

clays and high water contents associated with a higher electrical conductivity than sands or 

gravels and lower water contents.  When correlated with direct samples of the subsurface 

materials this technique can be used to distinguish identifiable stratigraphic units and thus to 

infer hydrogeologic properties.  Combination of direct-push EC profiling with DPP or with 

small-scale slug tests provide combined data for the same bore that is useful for cross-validation 

of interpreted stratigraphy (e.g., Sellwood et al., 2005). 

B.2.3. Electrical resistivity survey 

Surface electrical resistivity (reciprocal of conductivity) test is a geophysical method for 

hydrogeological exploration that applies the same electrostatics of the direct push EC probe to 

larger scales, with current induced between two electrodes emplaced at the surface and 

monitoring electrodes measuring the difference in electrical potential (i.e., voltage), nearby and 

usually between the inducing electrodes. The current used is direct current, commutated direct 

current (i.e., a square-wave alternating current), or alternating current with low frequency (about 

20 Hz). The resulting potential (volt) distribution can be related directly to electrical resistivity in 



267 
 

several idealized cases such as the case of perfectly layered strata or the case of homogeneous 

materials separated by a vertical dike (e.g., EPA, 2015).  In the 1-D case, the electrical resistivity 

"ρ” of soil material is expressed as: 

ρ =
A

L

ΔV

I
            (B-1) 

where, A is the cross-section area of current path, L is the length of flow path, ΔV is voltage, i.e., 

change in electrical potential in volts, and I is the electrical current. Electrical resistivity is 

measured in the units of Ω. m or Ω. cm. In case measurement is conducted over a real 

heterogeneous earth, the subsurface profile may consist of various layers with different 

resistivity and the symbol "𝜌" is replaced with apparent resistivity "𝜌𝑎". The electrical resistivity 

of various soils and rocks depends largely on the pore water content; however, ion concentration 

is an important factor too. The general electrical resistivity ranges from less than 100 for clays to 

200-3000 for sands, to 1500-2500 for fractured rock, to 3000-30000 for coarse gravels (e.g., 

Mitchell and Soga, 2005). There are several common procedures for measuring electrical 

resistivity of a soil profile with electrodes that are driven into the ground. Some of those include: 

Wenner array, Schlumberger, array, dipole-dipole, Lee, half-Schlumberger, polar dipole, bipole-

dipole, and gradient arrays. Here, we briefly describe the first three methods which are widely 

utilized, relying heavily on EPA (2015). The Wenner array method consists of four in-line, 

equally spaced electrodes. The outer two electrodes are typically the current source and the inner 

two electrodes are the receiver electrodes (Loke et al., 1996; ASTM, 2010). In the Schlumberger 

array the potential electrodes are installed at the center of the electrode array with a small 

separation relative to the spacing between the current-inducing electrodes. The third common 

resistivity method involves the dipole-dipole array, that involves dipoles (two closely spaced 
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electrodes), to measure the changes of electrical properties with depth. In depth discussion of 

implementations, limitations and interpretation of electrical resistivity methods can be found in 

ASTM (2010) and in EPA (2015).  

 

B.3. Hydraulic Methods for In-situ Conductivity Measurement 

 In situ hydraulic conductivity is classically viewed as the primary control on groundwater 

flow in response to gradients in hydraulic head, and essentially all groundwater textbooks 

include chapters on its characterization in place by perturbation of the hydraulic head in one 

borehold and its observation in the same or adjacent boreholes screened in the same aquifer 

material where the perturbation takes place, when identifiable (e.g., Todd and Mays, 2005; 

Fetter, 2000; Charbeneau, 2006). These techniques can be categorized into slug tests and 

pumping tests.  A slug test involves the instantaneous change in the water level in a borehole 

followed by monitoring its return to pre-perturbation conditions. Most commonly a cylinder 

(“slug”) is emplaced (or removed) from the borehole, causing a sudden increase (or decrease) in 

the water level in the borehole. The return of water level in the borehole to initial conditions is 

monitored (water level in the borehole as a function of time, best obtained through a pressure 

transducer deep in the borehole) and analyzed to determine the local hydraulic conductivity. The 

local hydraulic conductivity is inferred by inversion of an approximation of Darcy’s law that 

results in the conductivity being proportional to the slope of the natural log of hydraulic head vs. 

time. The advantages of this approach are that only one borehole is needed, and no power source 

is required; the primary disadvantage is that the hydraulic property measured is particular to the 

local neighborhood of the borehole being used for the test. 
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 Pumping tests involve extension of the slug test concept to one or more observation wells 

and continuous pumping at a fixed rate at a control well. Observation wells for this experiment 

are best as narrow-diameter wells that are screened only in the aquifer being pumped, termed 

“piezometers,” in order to eliminate artifacts due to storage in the monitoring well and adjacent 

flows. Because the hydraulic head change in this approach is typically measured in separate 

monitoring wells, the hydraulic conductivity values obtained are representative of the well-to-

well separation scale, significantly larger than that of the slug test. The analyses of the hydraulic 

head drop (drawdown) data observed as a function of time in the monitoring well involves 

different equations depending on the nature of the pumping (constant or pulsed in steps), the 

confined vs. unconfined nature of the aquifer studies, and the impact of hydraulic boundaries 

(e.g., Charbeneau, 2000). For instance, in the confined case with constant pumping, assuming 

homogeneous and perfectly-layered aquifer materials, the Theis solution is used, and this can be 

simplified to the Jacob solution for later time parts of the observed drawdown. The more 

complex unconfined case is fortunately solved in Neuman (1974), and these and a suite of related 

solution approaches for pumping test data interpretation is available in numerous available codes 

(eg., www.aqtesolve.com).  

B.3.1. Characterization of the hydraulic gradient and flow rates 

 As important as the stratigraphic understanding of the aquifer-aquitard structure of the 

subsurface and the corresponding hydraulic conductivities is the hydraulic gradient occurring 

within these formations, because the gradient and the hydraulic conductivity together dictate the 

natural groundwater flow direction and magnitude. The hydraulic gradient is the slope of the 

hydraulic head surface. In confined aquifers the hydraulic head is the level to which water will 

rise in a piezometer screened in the aquifer, and in unconfined aquifers the hydraulic head is 

http://www.aqtesolve.com/
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generally well-approximated by the water table. In the 2-D case with perfectly layered aquifer 

materials, the hydraulic head can be visualized as a surface just like topographic elevation, and 

the gradient is the slope of this surface. A convenient means of evaluating the slope in a given 

region is to emplace three piezometers in a right triangle layout, ABC, with B being the 

piezometer located at the right angle corner. Then the gradient is given by the two slopes, the 

head difference between piezometers at A and B, divided by the distance between the two, and 

the head difference between piezometers at B and C, divided by the distance between those two, 

respectively. It must be remembered that the 2-D assumption allows an approximation of what 

may be in reality be a 3-D gradient. A means of evaluating the vertical component of the gradient 

(that is, the 3
rd

 dimension when the first two are horizontal), is via a “piezometer nest.”  This is a 

series of piezometers installed in the same location but each screened at different depths. Vertical 

components of hydraulic gradients are particularly important in determining vertical fluxes 

across low-conductivity formations and in recharge areas. 

 Tracer testing provides an alternative approach to characterizing flow rates. The single-

well point dilution tracer test involves emplacement of a tracer (typically dye or salt) in a known 

concentration in a well followed by monitoring of the change in concentration of the tracer in the 

well as a function of time. These data can be analyzed to estimate the ambient flow rate through 

its flow component through the well itself. This test typically takes a day and the analyses should 

take account of the well geometry and the artificially high hydraulic conductivity associated with 

the gravel pack associated with the well installation (e.g., Hunkeler, 2010). When more 

observation wells are available, this test can be generalized to a multi-well tracer test, in which 

the tracer is injected in one well and observed at other downstream wells. The disadvantages of 

this approach are the increased costs associated with installation of the additional monitoring 
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wells and the challenge in capturing the tracer when the flow is relatively fast compared to the 

rate of dispersion of the salt around the injection well. This latter aspect can lead to the tracer 

plume following a narrow path that may not be intercepted by the downstream well. Also this 

method requires knowledge of the downstream direction a prioiri. 

 Finally, vertical flows monitored within boreholes can provide useful information on 

hydraulic head and on conducitivity profiles along the borehole (e.g., Molz et al.,1989; Paillet, 

2000; USGS 2015). In the absence of pumping, passive flow may occur in a borehole screened in 

multiple aquifer formations (or in one very thick one) due to vertical hydraulic gradients. In this 

case the measurement of vertical flow rates, as a function of elevation within the borehole, 

reveals the difference in hydraulic head between the contributing and receiving formations or the 

hydraulic head difference between them, given the other. Such monitoring can be combined with 

pumping of a given well, in which case the flowmeter gives the relative flux rates entering (or 

leaving) the borehole as a function of distance. Given the knowledge of the hydraulic head 

within the formation, such data give the hydraulic conductivity variations along the borehole. 

Flowmetering in these cases can be done using a simple impeller, a heat tracer, or 

electromagnetic induction monitoring (e.g., USGS, 2015). 

B.3.2. Recharge estimation 

 Characterization of the large scale behavior of subsurface flow systems is incomplete 

without quantification of the boundary fluxes of water entering or leaving the aquifer system.  In 

fact if flow rates at all inflow boundaries are known for steady-state flow systems then only 

relative conductivity information is needed to allocate the flow to different portions of the 

aquifer, and if that aquifer is homogeneous with a constant conductivity then only the aquifer 
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geometry is needed to complete the understanding of the flow. Recharge estimation methods are 

many beyond the current scope and include the broad field of environmental tracer interpretation. 

USGS (2014) provides a summary tabulation of methods with references, advantages, and 

limitations. Here we briefly summarize two basic approaches to quantifying areal recharge 

resulting from a surface influx of water. The unsaturated zone water balance method (UZWB) 

uses unsaturated zone water saturation and tension (negative of pressure head) measurements 

before and after a recharge event (rainfall or irrigation) to quantify the increase in water content 

that occurs below the depth above which water is extracted by evapotranspiration. This depth is 

identified by changes in the water tension with depth, and the net increase in water content 

fellow this depth is areally averaged to determine net recharge. In the water table fluctuation 

(WTF) method, the data collected is the increase in water table elevation and the recharge is 

estimated as the areally averaged change in saturated thickness multiplied by the specific yield. 

Advantages of these methods are the high-resolution identification of event-based recharge that 

is a big improvement over annual water-balance estimates, and disadvantages are the 

requirement for multiple soil water data or water table data over the extent of the area in 

question. This latter requirement is the main limiter on the utility of the method for identification 

of event-based recharge on regional scales. 

 

B.4. Summary 

 This chapter provides only the briefest survey of selected methods associated with the 

range of quantities requiring characterization for understanding subsurface hydrological cycles. 

Continued innovation in the numerous fields providing such data, including geophysical, 
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hydrological, electrical, is necessary to overcome our inability to characterize subsurface 

hydrogeological processes. The inaccessibility of the subsurface that makes hydrogeology the 

most challenging of the areas of environmental fluid mechanics. 
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