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ABSTRACT 

The prediction of the motion of sediment particles close to river beds is a notably 

complex task. Experimental and numerical studies have provided a basic understanding 

of the processes affecting the bed load; however, there are still several issues that are 

elusive to the current technology/theory. 

Numerical models have become a standard tool to analyze complex engineering 

problems. Despite intrinsic limitations derived from the assumptions required to make the 

theoretical models tractable, their value relies on their flexibility and wider range of 

applicability, as opposed to statistical results obtained from experiments. Bed load 

transport can be simulated through three sub-models: a) a set of equations describing the 

particle "free" flight, b) a sub-model to calculate the post-collision particle velocity and 

rotation, and c) a mathematical representation of the bed roughness. In this dissertation, a 

new theoretical/numerical model for bed load motion is presented, including different and 

novel versions of the above sub-models, in three spatial dimensions (3-D). 

The "free" flight sub-model includes the effect of several forces over the particle 

translation (buoyancy, drag, virtual mass, lift, fluid acceleration, Basset and Magnus 

forces) and also deals with the particle rotation. A new optimized methodology to 

compute the Basset force is presented, including both the use of a semi-derivative to 

calculate the Basset integral and the memory time concept, which reduces the integration 

span of the term. Important savings in computational time are obtained by using this 

methodology. This sub-model was validated through comparisons with experimental 

data. 
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The post-collision velocity and rotation sub-model features the conservation of 

linear and angular momentum during the rebound, and it enables a straightforward 

extension to inter-particle collisions. A new 3-D representation of the bed roughness is 

introduced by using geometric considerations between the moving particle and the bed, 

and a stochastic model. The bed is assumed to be formed by uniformly packed spheres 

and the determination of the contact point between the moving particle and the bed is 

evaluated by using three different algorithms. The proposed sub-models are compared 

with bed roughness models existing in the literature, and are compared with experimental 

data in the sand-gravel size range. It is concluded that the Dependent Bed Angle (DBA) 

sub-model provides the best representation of the bed. The importance of the values of 

the friction and restitution coefficients is also addressed. 

The particle tracking model was coupled with a highly-resolved, 3-D, turbulent 

flow field, to study the effect of the flow turbulence on the particle motion. The velocity 

field has been obtained for a flat-plate flow. In spite of the intrinsic differences between 

the boundary layers in flat plates and in open channels, the velocity field proved to be 

very valuable in gaining insight into small-scale particle fluctuations. The one-way 

coupling model was validated with experimental observations. Fluid/particle interactions 

were investigated by defining the particle turbulent intensity and the particle turbulent 

kinetic energy. To that end, a new filter to separate turbulence effects from the "mean" 

flow conditions is presented. The particle tracking model was supplemented with a sub

model of inter-particle collision. The effects of particle size, flow velocity, and particle 

concentration on the particle turbulent intensity and turbulent kinetic energy are 

elucidated. 
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The main contribution of this work is the development of a 3-D particle tracking 

model for bed load with an unprecedented level of detail. Unlike previous modeling 

efforts, the proposed model includes all forces in the equations describing particle 

motion. A new methodology to calculate the Basset force was proposed, which leads to 

important saving in computational time. Additionally, the influence of bed roughness in 

the particle trajectory is studied in detail and incorporated in the model. Finally, the 

influence of turbulence is studied through a one-way coupling simulation for multiple 

particles within a highly resolved turbulent flow field. These contributions lead to a better 

understanding of the bed load phenomenon and provide a tool for more realistic 

predictions in engineering applications. 
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CHAPTER 1 

INTRODUCTION AND MOTIVATION 

1.1 Problem Statement 

Since the beginning of mankind, sedimentation processes have been associated 

with multiple human activities, such as water supply, irrigation, and flood control, among 

others. Hundreds of billions of dollars are currently devoted annually to control sediment-

related problems, solely in the United States. Approximately $500 billion are spent 

yearly, only in dredging US harbors and waterways for navigation (Garcia, 1999). The 

loss of storage capacity in reservoirs of US dams can sum up to $100 million per year 

(Mien, 1998). These and other expenses provide a clear motivation for directing efforts 

to improving the current understanding of sediment motion in water bodies. 

Sediment transport encompasses important processes that occur in many 

environmental and industrial conditions. Several contaminants of concern in aquatic 

systems are hydrophobic, which means they absorb to solid material located either in the 

bed or in suspension in the water (Bonzogo et al., 1996; Shresta and Orlob, 1996; 

Gardner and Theis, 1996; Wang et al., 2004; Massoudieh et al., 2006; Massoudieh et al., 

2008). Suspended sediments can also be associated with pollution driven by pathogens: 

virus may attach to colloids in coastal areas (Redman et al., 1997). Because of this a 

detailed knowledge of the transport and fate of sediments is necessary to quantify the 

transport and fate of contaminants. Considering the risk to biota and human health driven 

by toxic chemicals, the study of sediment transport becomes especially important. 
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In addition, in industrial applications such as pneumatic transport of fine materials 

and the hydraulic transport of minerals (slurry), the efficiency of the transport is strongly 

dependent upon the interaction of particles and flow. In this case, a more thorough 

knowledge of these processes could lead to a decrease of construction and operational 

costs in those facilities. 

Sediment transport in rivers can be classified in three categories: a) suspended 

load, b) wash load, and c) bed load (Julien, 1998; Garcia, 1999). In bed load, the grains 

maintain a quasi permanent contact with the bed in a very narrow region, usually defined 

as a few grain diameters thick (Garcia, 1999). 

The analysis of bedload is a fairly complex task. Depending on the size of the 

particle and the particular flow condition, sediments are transported along the river bed 

by rolling, sliding and saltating (Hu and Hui, 1996). According to previous observations, 

the percentages in each mode depend upon the flow intensity, which can be expressed 

through the parameter © = T0 l{ps -p) g dp, where r0 corresponds to the bed shear 

stress, ps and p denote the density of the sediment and water respectively, g is the 

acceleration of gravity and dp is the particle diameter. While rolling accounts for 80% of 

the bedload motion when © is less than 0.8, the fraction of rolling drastically decreases 

as r, increases (Hu and Hui 1996). Saltation accounts for nearly 50% of the bedload 

motion when © is equal to 0.15, and it is more than 60% when © is equal to 0.2 (Hu 

and Hui 1996). Therefore, saltation is considered to be the main form of bed load motion 

in most natural conditions (Einstein, 1950; Sekine and Kikkawa, 1992, Lee et al., 2000). 

The bed load transport has been widely studied since the beginning of the past century, 

using both empirical and analytical approaches. 



3 

Despite the progress in measurement techniques, it is still difficult to perform 

detailed observations of flow and particle motion near the bed, whether in the laboratory 

or in situ. Empirical formulas for bed load transport are therefore restricted to certain 

ranges of flow and particle characteristics, and extrapolation to conditions beyond those 

ranges is not reliable. Nevertheless, these formulas are widely used in practice, even 

outside of their ranges of applicability. 

The numerical simulation of sediment transport in general has proven to be a 

promising tool to estimate the amount of material put into motion and to provide 

information on bed changes. However, the accuracy of those models is still limited (Duan 

et al., 2004) and there is a lack of knowledge of the small-scale interactions of particles 

with the flow (Haratty et al., 2003). Existing numerical models are able to give 

quantitative predictions in some cases, and are restricted to qualitative predictions in real 

conditions of practical interest (see Duan et al., 2004; Olsen, 2003). 

In particular, several models for bed load transport have been presented recently 

for dilute mixtures (Sekine and Kikawa, 1992; Nino et al., 1994; Nino and Garcia, 

1998b). (In this study, a mixture is said to be dilute if the concentration of particles in 

water is smaller than 1 or 2% by volume.) Within this approach, it has been assumed that 

particles are driven by the flow and there is no interaction between particles and the 

surrounding fluid. Notwithstanding this hypothesis, the predictions of those models have 

been quite satisfactory. 

Recently, some authors have incorporated aspects of the two-phase flow theory to 

describe particle-laden flows (in a general sense). This theory has been successfully 

applied in different problems in the fields of chemical, nuclear and mechanical 
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engineering (Drew, 1976; Elghobashi and Abou-Arab, 1983; Gore and Crowe, 1989; 

Ahmadi and Ma, 1990; Squires and Eaton, 1994). This is a theory in which the liquid and 

solid phases obey basic conservation laws coupled through interactions forces (Jiang et 

al., 2004). 

Two-fluid models have been also used with success in improving the prediction 

of particle concentrations in sediment-laden flows in open channels (Greimann et al., 

1999; Greimann and Holly, 2001; Hsu et al., 2003; Jiang et al., 2004). Considering these 

accomplishments, is in the writer's opinion that the use of the concepts of two-phase flow 

theory in bed load transport problems will increase our knowledge about this type of 

particle-laden flow. This theory provides the tools to understand the small-scale 

interactions between the sediment and the fluid, a subject that has been addressed only in 

a limited fashion in the case of particles moving close to river beds. 

1.2 Research Description and Objectives 

The main objective of this work is to develop a two-phase flow model to integrate 

fluid and particle motion using an Eulerian-Lagrangian approach close to the channel 

bed. This work focuses on the water flow close to the wall and the transport of sediment 

in bed load motion, and it includes processes that have been disregarded in most existing 

models, most notably inter-particle collision. 

The specific objectives of this study are: 

• To develop and validate an Eulerian-Lagrangian model to simulate the saltation of 

particles close to the bed. The Lagrangian model is intended to be coupled with 

highly-resolved velocity fields, using Large Eddy Simulations (LES) or Direct 



Numerical Simulations (DNS). Validation of this model is accomplished via-

comparison with experimental data. 

• To optimize the computational effort of the Lagrangian model to calculate particle 

trajectories and velocities, by revisiting the formulations for all forces; with 

special emphasis is put on the Basset force. 

• To examine existing bed-representation sub-models, to propose a simple yet 

realistic new approach and to validate it via comparison with experimental data. 

• To gain more understanding about the response of saltating particles to the 

velocity fluctuations in the flow (i.e., to turbulence). To that end, a highly-

resolved flow simulation, considering one-way coupling between phases, is 

developed. 

1.3 Definitions, Assumptions and Limitations 

In the present work, sediment particles are assumed to be perfect spheres saltating 

near the bed. 

Their trajectories are calculated using a Lagrangian approach. The saltation 

process is numerically simulated via two separate stages of motion: 1) the free flight of 

particles through the flow and 2) the collision with the wall. 

In the first stage, the particle trajectory is defined by the hydrodynamic forces 

acting on it. Models for this stage have been extensively developed by several researchers 

(Maxley and Riley, 1983; Mei et al., 1991; Nino and Garcia, 1994; Lee and Hsu, 1994; 

Schmeeckle and Nelson, 2003; Lukerchenko et al., 2006, Lee et al., 2006, Gonzalez et 

al., 2006; Bombardelli et al., in press). In this work, the effect of buoyancy, lift, virtual 
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mass, drag, Basset, Magnus, and fluid acceleration forces are considered. Electro

chemical forces, that are present in the case of very small particles, have been left out of 

the analysis. 

The second stage relates to the process whereby the particle hits the wall and 

eventually rebounds. The wall-particle collision event was represented by using two sub

models: a) a set of equations to calculate the particle velocity after the rebound and b) a 

sub-model to represent the bed roughness. The proposed model does not consider any 

mechanism to prevent the particle motion after a rebound; therefore, if the flow 

conditions allow the particle motion, the particle will move with a saltating trajectory 

without stopping. 

To study the effect of the spatial and temporal variations in the flow, a highly 

resolved 3-D (HR3D) turbulent velocity field was used. This velocity field was obtained 

by simulating a boundary-layer flow on a smooth flat plate. Despite differences between 

a boundary layer in a flat plate and in an open-channel flow (the latter akin to rives and 

flumes; see, Nieuwstadt and Bradshaw, 1997; Ashrafian, 2004), the mean stream-wise 

velocity has been found to be accurately represented by the semi logarithmic law of the 

wall in both flows (Gad-El-Hak 2000). Wei et al. (2005) present "compelling evidence" 

of the similitude of both flows in a large region, and therefore it is assumed in this work 

that the use of the HR3D field of a flat plate is a satisfactory velocity field for the purpose 

of this study.. 

This work promotes a mechanistic view of sediment transport using the two-phase 

flow theory regardless of the range of particle sizes; this approach aims at avoiding the 

use of limiting empirical formulas as much as possible. Given the random nature of the 
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transport of sediments, it is impossible to eliminate completely the use of empirical 

formulas. Values of coefficients associated with surface forces over the particle (such as 

lift and virtual mass) and from the particle collision (i.e., friction and restitution 

coefficients) are considered in this study as known values (from previous studies). It is 

worth to pointing out that there is still a great debate surrounding those values. 

1.4 Dissertation Plan 

The results obtained in this work are organized in five chapters, as follows. 

Chapter 2 presents a literature review of the existing particle tracking models, wall-

particle and inter-particle collision algorithms, bed roughness representations and the use 

of spatially-temporally variable velocity fields in the study of bed load transport. A 

summary of the available experimental data used for validation purposes, and a review 

indicating the knowledge gaps that the writer addresses in this dissertation, are also 

included. 

Chapter 3 presents the results obtained with a two-dimensional (2-D) particle 

tracking computational code, including a rebound sub-model and a bed roughness 

representation. The model was validated through comparison of numerical predictions 

with experimental data. To optimize the computational cost of the particle tracking 

model, a new methodology to calculate the Basset force was developed and it was tested 

for particles of both small and large size. 

In Chapter 4, a three-dimensional (3-D) particle tracking model is presented, 

which includes the description of both the particle translational and rotational velocity at 

every moment. An assessment of existing sub-models for bed roughness representation is 
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introduced in this chapter together with a new sub-model. The validation of the best sub

model is accomplished by comparing its performance with experimental data. The 

computational code also considers the motion of multiple particles and an algorithm to 

treat the inter-particle collisions. 

Chapter 5 presents the results of the proposed 3-D model coupled with a highly 

resolved 3-D (HR3D) t urbulent velocity field. After its validation, the effect of the 

turbulence on the particle motion is studied in detail. The interaction between particles, 

the effect of particle size, volumetric concentration of particles and flow conditions on 

particle turbulent parameters are discussed in this chapter. A new filter to separate the 

fluctuating component of the particle velocity from the "mean" value is introduced in this 

chapter. 

Finally Chapter 6 summarizes the contributions of this study, provides the final 

conclusions of this dissertation and presents guidelines for future work. 

Specific topics addressed in this dissertation have been communicated in papers 

published or in press in several international proceedings and journals. 

• Gonzalez, A.E., Bombardelli, F.A. and Nino, Y. (2006). "Towards a Direct 

Numerical Simulation (DNS) of particle motion close to river beds", in River 

Flow 2006, Proc. of the Int. Conf. on Fluvial Hydraulics, Lisbon, Portugal, R. M. 

L. Ferreira, E. C. T. L. Alves, J. G. A. B. Leal, and A. H. Cardoso (Eds.), Vol. 1, 

pp. 799-806. 

• Gonzalez, A.E., Bombardelli, F.A. and Nino, Y. (2006). "Improving the 

prediction capability of numerical models for particle motion in water bodies", in 
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The 7th Int. Conf. on Hydroscience and Engineering (ICHE-2006), Sep 10 - 13, 

Philadelphia. 

• Gonzalez, A.E., Bombardelli, F.A., Calo, V. and Nino, Y. (2007). "Simulation of 

the particle motion close to a rigid bed", presentation at the ASME Applied 

Mechanics and Materials Conference, June. Austin, Texas. 

• Bombardelli, F.A. and Gonzalez, A.E. (2008). Discussion of "Analytical approach 

to calculate rate of bank erosion" by Duan, J.G. Journal of Hydraulic Engineering, 

134 (2), 280-281. 

• Bombardelli, F. A., Gonzalez, A. E., and Nino, Y. I. (2008). "Non-linear, 

Lagrangian theoretical models for particle motion close to solid boundaries". 

Journal of Hydraulic Engineering, in press. 

Recent submissions: 

• Gonzalez, A.E., Bombardelli, F.A. and Moniz, R. (2008) "Generalized algorithms 

for particle motion and collision with river beds", submitted to the Computer and 

Geosciences Journal. 

• Gonzalez, A.E., Bombardelli, F.A. and Calo, V. (2008). "Particle saltating motion 

under a highly resolved 3D turbulent velocity field ". future submission. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter presents the state of the art in the modeling of particle-laden flows. 

Specifically, this chapter reviews previous works which employ the two-phase flow 

theory for particle motion; it presents an assessment of the different forces used in 

previous Eulerian/Lagrangian studies (with emphasis on the Basset force) and discusses 

works dealing with different wall-particle and inter-particle collision algorithms. The 

chapter also includes information concerning previous experimental setups that were used 

to validate the model presented in this dissertation. Finally a global evaluation of the state 

of the art is introduced. 

2.1 Important Definitions 

A flow is considered dilute if the effect of particle-particle interactions is not 

significant (Crowe et al., 1998). Particle-particle interactions can refer to two separate 

mechanisms: a) particle-particle collisions (where the particle can rebound, shatter or 

coalesce) and b) particle-particle fluid-dynamic interactions (where the proximity of the 

particles affects their fluid dynamic forces). Dilute flow will generally include one-way 

coupling (where the disperse phase is affected by the continuous phase) and two-way 

coupling (where the disperse-phase also affects the continuous phase). The three-way 

coupling, refers to mechanism b) above where particles may affect locally the flow field 

of neighboring particles, thereby promoting time-varying changes in the local structure of 
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the flow. (This effect adds to the two-way coupling.) In addition, particles may suffer 

from frequent collisions in non-dilute mixtures, effect known as four-way coupling. 

Two different methods usually have been employed to describe two-phase flows. 

The Lagrangian approach is a natural extension of particle mechanics, and it focuses on 

material particles as they move through the flow. Each particle in the flow is labeled, or 

identified by its original position. On the other hand, in the Eulerian approach, one 

concentrates on what happens at a spatial window and it is especially useful to describe 

how a fluid behaves (Kundu and Cohen, 2004). These two different approaches have 

been used to describe liquid-particle flows under the two-phase flow theory: Eulerian-

Eulerian and Eulerian-Lagrangian. While in both cases the carrier fluid is treated as a 

continuum, the disperse phase can be analyzed as a continuum (Eulerian-Eulerian 

approaches) or as a set of particles that need to be followed individually (Eulerian-

Lagrangian approaches). 

2.2 Two-Phase Flow Studies 

Several authors have contributed with numerical simulations of particle-laden 

flows. Different approaches have been presented in order to solve the system of partial 

differential equations concerning the particle and fluid motions. A brief summary is 

presented in Table 2-1. 

One-way coupling has been the main level of interaction used by several authors 

in order to describe the particle motion in a turbulent flow. Sommerfeld (1992, 2003) 

used a K-s turbulent closure in order to treat the fluid turbulence; Dorgan and Loth 



12 

(2004) and van Haarlem and Boersman (1998) performed DNS to treat the continuous 

phase and used a Lagrangian approach for the particle motion. 

Table 2-1: Summary of two-phase flows studies. The three last works are large-scale models 

Author 

Amoudry 
etal. 

Boivin et 
al. 

Cheng & 
Pereira 

Dorgan & 
Loth 

Elghobash 
i& 

Truesdell 

Ferrante & 
Elgobashi 

Greimann 
etal. 

Greimann 
& Holly 

Hsu etal. 

Kartushins 
-ky& 

Michaeli-
des 

Kartushins 
-ky& 

Michaeli-
des 

Lun & Liu 

Portela & 
Oliemans 

Schabani 
etal. 

Year 

2008 

1998 

2000 

2004 

1993 

2003 

1999 

2001 

2003 

2004 

2007 

1997 

2003 

2005 

Eul/ 
Lag 
or 

Eul/ 
Eul 

E-E 

E-L 

E-L 

E-L 

E-L 

E-L 

E-E 

E-E 

E-E 

E-E 

E-L 

E-L 

E-L 

E-L 

One 
/Two 
Way 
Cou
pling 
Two 

One 
/Two 

One 
/Two 

One 

Two 

Two 

Two 

Two 

Two 

One 

Four 

Two 

One 
/Two 

One 

Colli
sions 

Yes 

No 

Yes 

Elastic 
Wall 

Collisio 
ns 
No 

No 

No 

Yes (no 
near the 

bed) 
No 

Yes 

Yes 

Yes 

No 

Yes 

Dilute 
Mix
ture 

No 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

No 

No 

Yes 

Yes 

Yes 

Set-up 

Open-
channel 

Isotro
pic tur
bulence 

Pipe 

Channel 

Isotro
pic tur
bulence 
Isotro

pic tur
bulence 
Open-

channel 

Open-
channel 

Open-
channel 

Pipe 

Channel 

Channel 

Pipe 

Open-
channel 

Particle 
size 

D=0.21-
0.46 
mm 

D=0.11-
0.35 n 

D=400-
520 um 
D=y+ 

D « n 

D=0.04-
0.6 n 

D=0.13-
1.3 mm 

D=0.26-
1.3 mm 

D=0.13-
0.24 
mm 

D=243-
501 p.m 

D=24-
88 um 

D=500 
um 

Zero-
volume 

D=500 
mm 

Gas/ 
Water 

Water 

Gas 

Water 

Gas 

Gas 

Gas 

Water 

Water 

Water 

Gas 

Gas 

Gas 

Gas 

Water 

Method 

K-e 

DNS 

K-e 

DNS 

DNS 

DNS 

Anali. 
Exp 

Anali. 
Exp 

Anali. 
Exp 

K-e 

K-e 

K-e 

DNS 
/LES 

Law of 
the wall 
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Author 

Schmee-
ckle and 
Nelson 

Sommer-
feld 

Sommer-
feld 

Squires & 
Eaton 

Sundaram 
& Collins 

Ten Cate 
etal. 

van 
Haarlem 

etal. 
Yamamo-

to et al. 

Yeganeh 
etal. 

Young & 
Leeming 

Year 

2003 

2003 

1992 

1990 

1999 

2004 

1998 

2001 

2000 

1997 

Eul/ 
Lag 
or 

Eul/ 
Eul 

E-L 

E-L 

E-L 

E-L 

E-L 

E-L 

E-L 

E-L 

E-L 

E-E 

One 
/Two 
Way 
Cou
pling 
One 

One 

One 

One 

Two 

Two 

One 

One 
/Two 

Two 

Two 

Colli
sions 

Yes 

Yes 

Yes 

No 

No 

Yes 

No 

Yes 

Yes 
(soft 

sphere 
model) 

No 

Dilute 
Mix
ture 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

No 

Yes 

Set-up 

Channel 

Channel 

Channel 

Isotro
pic tur
bulence 

Isotro
pic tur
bulence 
Isotro

pic tur
bulence 
Channel 

Pipe 

Open-
channel 

Pipe 

Particle 
size 

D=5 
mm 

(mean) 
D=30-
195 urn 
D=45-
108 um 

D « r | 

D=100 
um 

D > r | 

D«T) 

D=7-70 
um 

D=5 
mm 

D=0.28-
0.5y+ 

Gas/ 
Water 

Water 

Gas 

Gas 

Gas 

Gas 

Gas 

Gas 

Gas 

Water 

Gas 

Method 

Exp 
(Flow)+ 

DNS 
K-e 

K-e 

DNS 

DNS 

DNS 

DNS 

LES 

K-e 

RANS 

On the other hand, two-way coupling has been employed in some occasions to 

capture interesting phenomena related to particle diffusion, inter-particle interactions and 

wall-bouncing effects (Taniere et al., 2004; Portela and Oliemans, 2003). 

Portela and Oliemans (2003) developed a code for DNS and LES of particle-laden 

turbulent gas flow using an Eulerian-Lagrangian approach. They considered in their 

simulations a very small fraction of point heavy particles (dilute condition); thus, the 

effect of the particle volume was not taken into account on the mass balance of the fluid. 

They also assumed that the distance between particles was large compared with the 
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particle size, neglecting hydrodynamic coupling. Portela and Oliemans considered drag 

as the only force acting on the particles. 

Most of the studies mentioned above have involved the transport of very fine 

particles through a gas, mainly for industrial applications, where the particle size has 

been assumed to be relatively uniform. Those studies have usually dealt with the 

transport of particles in close conduits, such as pipes (Portela and Oliemans, 2003; Young 

and Leeming, 1997) and channels (Lun and Liu, 1997; Dorgan and Loth 2004). 

Comparatively, little research has been performed regarding the transport of 

particles (sediment transport) in open channels using the two-phase flow theory. Some 

studies have been developed for dilute suspensions, using an Eulerian-Eulerian point of 

view. Greimann et al. (1999) and Greimann and Holly (2001) used this approach to 

obtain an analytical expression of the vertical concentration profile for suspended 

sediment in an open channel. Using the same approach, Hsu et al. (2003) used the 

boundary layer approximation to obtain concentration profiles that provided closer 

predictions to measurements than the single-phase Rouse formula. Jiang et al. (2004) 

included additional dispersion terms that predicted more accurately the sediment 

concentration distribution along the water depth. 

On the other hand, the Eulerian-Lagrangian approach has not been much used in 

sediment transport problems either. Chen and Pereira (2000) developed a two-phase flow 

code using the K-s model to simulate the movement of the particles in an axisymmetric 

sudden expansion pipe. Schmeeckle and Nelson (2003) focused on providing a detailed 

collision model for different particle sizes, to represent in a realistic way how natural 

particles interact. However, they used a fluid velocity field obtained from experiments 
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rather than simulating it with the two-phase flow equations. Yeganeh et al. (2000) used 

the Eulerian/Lagrangian approach to study sheetflows under a high bottom shear stress by 

using a 2-D model with inter-particle collisions. Amoudry et al. (2008) predicted the time 

evolution of sediment transport for sheetflows in unsteady conditions 

2.3 Forces Considered in Lagrangian-Eulerian Studies 

When using a Lagrangian approach to describe the trajectory of a single particle 

moving in a flow field, the Second Newton's law is applied. Generally speaking, the 

acceleration of the particle is determined by the sum of all the external forces affecting it. 

Those forces include in the body particle forces induced by the gravitational field 

(buoyancy) and the forces induced by pressure and shear stresses imposed by the fluid on 

the particle surface. Forces coming from pressure differences and stresses have been the 

subject of much research, and usually a point-force approach is used to evaluate those 

forces (Dorgan and Loth, 2007). These forces include the quasi-steady drag force; the lift 

force generated by the shear stress and the particle rotation (usually called Magnus 

force); the virtual or added mass force which accounts for the work required to change 

the momentum of the surrounding fluid as the particle accelerates; the fluid acceleration 

force which accounts for the forces that would exists in the absence of the particle, due to 

acceleration of fluid and the hydrostatic pressure gradient; and the unsteady-drag force, 

usually called "history" or Basset force, which addresses the temporal delay in the 

development of the boundary layer surrounding the particle as a consequence of changes 

in the relative velocity (Crowe et al. 1998). 
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A particularly important theoretical equation for particles moving in a low 

Reynolds number flow field was developed by Maxey and Ridley (1983); this equation ( 

which models the motion of a small particle moving inn unbounded fluid, within the 

Stokes range) has been the basis for most of the research done in this field. Depending of 

the complexity of the flow simulation, particle size and the physical size of the problem 

to simulate, the effect of some of the previously listed forces has been disregarded by 

several authors, as Table 2-2 summarizes. 

The references with the symbol (*) correspond to application of particles moving 

in pneumatic systems (except Mordan and Pinton, 2000), where usually the emphasis of 

the study is put in how to model the complexity of the flow field. The remaining 13 

references deal with applications of bed load transport, where usually only the drag, 

buoyancy and lift force are considered to determine the particle trajectory. Basset, 

Magnus and virtual mass force are usually neglected, sometimes without solid arguments 

or clear-cut evidence. 

Table 2-2: Summary of Lagrangian/Eulerian studies for particle motion. Forces included. 

Autor 

Armenio & 
Fiorotto (*) 

Chen& 
Pereira (*) 

Dorgan & 
Loth (*) 

Mondant & 
Pinton 

Year 

2001 

2000 

2004 

2000 

Flow method 

Pseudo-spectral 
method 

K-e 

DNS 

Still water 

Forces 

Drag (linear), 
virtual mass, 

fluid 
acceleration, 

Basset 
Drag, lift, 

virtual mass, 
buoyancy 

Drag (linear), 
buoyancy 

Drag(linear), 
buoyancy, 

virtual mass, 
Basset 

Particle size 

^=0.005-0.01 

mm 

dp =0.4-0.5 mm 

dp =0.024 mm 

dp =0.25-3 mm 

Particle 
Material 

pp/p=2.65-

2650 

glass beads 

solid sphere 

glass, steal & 
tungsten 
particles 
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Autor 

Portela & 
Oliemans 

Sommerfeld 
(*) 

Sommerfeld 
(*) 

Tsuji et al. 
(*) 

van Haarlem 
& Boersma 

(*) 

Vojir & 
Michaelides 

(*) 

Yamamoto 
et al. (*) 

Harada & 
Gotoh 

Hu & Hui 

Lee & Hsu 

Lee et al. 

Lee et al. 

Lukerchenko 
etal. 

Lun & Liu 

Nifio& 
Garcia 

Year 

2003 

1992 

2003 

1997 

1998 

1994 

2001 

2006 

1996 

1994 

2000 

2006 

2006 

1997 

1994 

Flow method 

DNS-LES 

2-D K-e model 

Potential law 
1/7 +measured 

rms values 

Boundary layer 
eq. 

DNS 

Sinusoidal flow, 
uniform flow 

w/wo 
turbulence 

LES 

Logarithmic 
expression + 
Monte Carlo 
Method for 
turbulence 

2-D 
Logarithmic 
expression 

2-D 
Logarithmic 
expression 

2-D 
Logarithmic 
expression 

2-D logarithmic 
expression 

2-D 
Logarithmic 
expression 

K-e 

2-D 
Logarithmic 
expression 

Forces 

Drag 

Drag, lift due to 
slip-shear, 

gravity, Magnus 
Drag, lift, 
buoyancy, 
Magnus 
Drag, 

buoyancy, lift, 
Magnus 

Drag (linear) 

Drag, 
buoyancy, 

virtual mass, 
Basset, fluid 
acceleration 

Drag, lift, 
Magnus, gravity 

Drag, 
buoyancy, 

virtual mass 

Drag, 
buoyancy, lift, 
virtual mass, 

fluid 
acceleration, 

Magnus 

Drag, 
buoyancy, lift 

Drag, 
buoyancy, lift 

Drag, 
buoyancy, lift 

Drag, 
buoyancy, 

virtual mass, 
Basset, Magnus 

Drag, 
buoyancy, lift, 

Magnus 
Drag, 

buoyancy, lift, 
virtual mass, 

basset, Magnus 

Particle size 

dp =0.66 y+ 

(5^=0.05-0.11 

mm 

dp =0.03-0.7 mm 

dp=\ mm 

dp =0.15-0.25 y+ 

-

dp =0.007-0.07 

mm 

Sand range 

dp =2-3.2 mm 

dp =1.36-2.47 

mm 

d =6 mm 

dp =0.039-0.068 

mm 

d =15 mm 

d =1 mm 

dp =15-31 mm 

Particle 
Material 

ppl p=1000 

glass beads 

glass beads 

polystrene beads 

point spheres 

-

Pplp =0.7-8.8 

natural sediment 

natural sediment 

natural sediment 

natural sediment 

natural sediment 

natural sediment 

polystrene bead 

natural sediment 
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Autor 

Nifto& 
Garcia 

Schmeeckle 
and Nelson 

Shabani et 
al. 

Sekine & 
Kikkawa 

Yeganeh et 
al. 

Year 

1998b 

2003 

2005 

1992 

2000 

Flow method 

2-D 
Logarithmic 
expression 

Experimental 
measurements 

3-D logarithmic 
expression 

3-D logarithmic 
expression 

2-D K-e 

Forces 

Drag, buoyancy 
,lift, virtual 

mass, Basset, 
Magnus 

Drag, buoyancy 

Drag, 
buoyancy, 

virtual mass 
Drag, 

buoyancy, 
virtual mass 

Drag, 
buoyancy, 

virtual mass 

Particle size 

dp =0.5-0.8 mm 

d =2-7 mm 

dp =0.05 mm 

dp =0.3-0.6 mm 

d =5 mm 

Particle 
Material 

natural sediment 

natural sediment 

natural sediment 

natural sediment 

glass beads 

Although several authors have disregarded the Basset force in their models of bed 

load transport (see for instance Wood and Jenkins, 1973, Lee and Hsu, 1994, Schmeeckle 

and Nelson, 2003, Shabani et al, 2005, Harada and Gotoh, 2006) there is recent evidence 

that the Basset force becomes important for relatively small particle sizes, i.e., for 

relatively small explicit particle Reynolds numbers, Rp - \R g d3
p) Iv, where R is 

(ps I p) -1, p and ps denote fluid and particle density, respectively, g is the 

acceleration of gravity, dp is the particle diameter and v is the kinematic viscosity of 

water. Comparisons of numerical results with laboratory observations have shown that, 

while the Basset force is negligible for gravels moving as bed load (with Rp of the order 

of 20,000; Nino and Garcia, 1994), it becomes extremely important for sands (with Rp 

of the order of 100; Nino and Garcia, 1998b). When the Basset force is neglected in the 

case of sands, the length of a single particle jump can be under-predicted by about 40%, 

and the jump height can be under-predicted by about 15% (see Fig. 2 in Nino and Garcia 

1998b and Figs. 3-4 to 3-6 in this dissertation). These differences can accumulate for 
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multiple jumps and lead to very large errors in computations of transport. Mordant and 

Pinton (2000) in turn performed laboratory tests of spheres settling in water, with 

diameters ranging from 0.5 mm to 6 mm, and fall (limit) velocities varying from 0.07 to 

1.16 m/s. They found that the Basset force needs to be included in the Lagrangian models 

in order to correctly describe the particle acceleration when the particle Reynolds number 

is smaller than 4,000 (given by Rep =ws d Iv, where ws is the particle fall (limit) 

velocity). This result is in accord with the findings of Nino and Garcia (1994, 1998). In 

addition, consistent with the above results, Armenio and Fiorotto (2001) found that the 

Basset force is appreciable for Rep of the order of, and smaller than, 1, for a large range 

of density ratios. 

In Lagrangian models, the evaluation of the Basset force can be extremely time-

consuming and requires the storage of the relative acceleration of the particle, which can 

make the simulation very demanding in terms of computer memory. Michaelides (1992) 

recast the linear equations of particle motion using Laplace transforms. He also employed 

"canonical" velocity fields to simplify the analysis, and presented a novel procedure to 

reduce the computational cost of including the Basset force. Obviously, his procedure 

does not apply to non-linear equations, or to random fields which prevail in flumes and 

rivers. 

2.4 Particle-Wall Collisions 

A complete collision model usually can be divided in two sub-models: a) a series 

of equations to describe the particle velocity after the rebound and b) a representation of 

the bed roughness. The simplest collision sub-model would be to assume that the particle 
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rebounds in a completely elastic way on a flat bed and, therefore, that the particle 

velocity after hitting the wall is exactly the same than the particle velocity before hitting 

the wall, changing only the direction of the velocity component in the wall-normal 

direction. However, this method neglects the loss of energy associated with the collision. 

Using equations for the conservation of momentum and energy during the 

collision, and/or geometrical considerations, several authors have derived expressions for 

the velocity of a particle after hitting a wall (Matsumoto and Saito, 1970a; Tsujimoto and 

Nakagawa, 1983; Tsuji et al., 1985; Nino and Garcia, 1994, Lukerchenko et al., 2006). 

Two of these models, proposed by Tsuji et al. (1985), and Nino and Garcia (1994), have 

been widely used in different applications of particles moving close to a rigid wall (Tsuji 

et al., 1987, Sommerfeld, 1992; Nino and Garcia, 1998a,b; Sommerfeld and Huber, 1999; 

Lee et al., 2000; Kartushinsky and Michaelides, 2004; Lee et al., 2006). In spite of the 

general agreement in the physics behind the collision equations, there is still considerable 

debate regarding how to reproduce the randomness in the saltating process that particles 

naturally experience. 

The randomness of the collision phenomenon is driven by the effect of the shape 

of the bouncing particle (Matsumoto and Saito, 1970a; Schmeeckle and Nelson 2003) 

and by the intrinsic roughness of the wall (Matsumoto and Saito, 1970b; Tsujimoto and 

Nakawaga, 1983; Tsuji et al., 1987; Sekine and Kikkawa, 1992; Garcia and Nino, 1992). 

In reality, both mechanisms contribute, but numerical simulations become increasingly 

complicated if non-spherical particles are considered. 

One of the first models which considered the influence of the wall roughness and 

the effect of particle shape in particle-wall bouncing was that proposed by Matsumoto 
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and Saito (1970b). In this study, the wall was represented by a sinusoidal shape, where 

the phase of the roughness was randomly specified. A different approach to represent the 

wall roughness was proposed by Tsujimoto and Nakagawa (1983). The authors assumed 

that the bed was composed by uniformly-packed spheres aligned at the bottom of the 

channel. The random nature of the collision was given by the point of contact between 

the moving particle and the bed particles. 

Subsequent modeling has increasingly created more complex bed configurations. 

Sekine and Kikkawa (1992) considered that the bed was composed by similar diameter 

spheres. The centroid of each sphere composing the bed protruded above or was 

depressed below the mean bed elevation, by an amount that varied randomly. Scotti 

(2006) assumed that the bed is composed by ellipsoids, randomly oriented at the bottom. 

All previous models required a detailed description of the geometry of the wall, which in 

some cases could lead to high computational costs. 

On the other hand, several authors have provided different methodologies to 

simulate the roughness of the bottom, without describing the exact geometry of the bed. 

The effect of the bed roughness is usually incorporated in the collision model as a change 

in coordinate system due to the existence of an angle between the coordinate system 

associated with the channel and the real point of contact between the flying particle and 

the bed. Sommerfeld (1992) adopted some concepts from the work of Tsuji et al. (1985) 

and replaced the wall (assumed to be plane) by a virtual wall, where its inclination was 

assumed to be uniformly distributed in the range (-4°, +4°) (Tsuji et al., 1987) and 

normally distributed between -4 and 4° (Sommerfeld, 1992). Garcia and Nino (1992) and 

Nino and Garcia (1994) provided a stochastic estimation of the angle of collision by 
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using a random generator to produce values of r (an auxiliary variable) with uniform 

probability for given values of the incident angle. The definition of r is the result of 

considering the bed formed by uniformly-packed spheres. 

2.5 Inter-Particle Collisions 

Two approaches are usually followed to model inter-particle collisions: "hard-

sphere" and "soft-sphere" methods. Those techniques are employed to compute the 

velocity, energy, and spin after the collision of particles as a function of the incoming 

values of velocity, energy, and spin. 

In hard-sphere systems, particle deformation during the collision is neglected and 

the trajectoryies of the particles are determined by momentum-conserving binary 

collisions. The interactions between particles are assumed to be pair-wise, i.e, only binary 

collisions are considered, which are also assumed to be instantaneous. For not too dense 

systems, the hard-sphere models are considerably faster than the soft-sphere models 

(Deen et al., 2007). 

In more complex situations, the particles may interact via short or long-ranges 

forces, and the trajectories are determined by integrating the Newtonian equation of 

motion. In cases where the particle concentration is high (e.g., fluidized beds, sheet 

flows), the use of spring/dashpot systems to describe the collision between particles have 

been widely used (Gotoh and Sakai, 1997; Yeganeh et al., 2000; Schabani et al., 2005; 

Harada and Gotoh, 2006) 

Simulation of multiple particles is a computationally demanding task and the 

incorporation of inter-particle collision algorithms could make the problem intractable. 
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Several authors have simply disregarded the interaction between moving particles (van 

Haarlem and Boersma, 1998; Portela and Oliemans, 2003; Dorgan and Loth, 2004). 

Inter-particle collisions based on hard-sphere models have been implemented 

and studied by Sommerfeld (1992, 2003), Lun and Liu (1996), Schmeeckle et al. (2001), 

Yamamoto et al. (2001), Schmeeckle and Nelson (2003), Kartushinsky and Michaelides 

(2004) and Ten Cate et al. (2004). However, there is little experimental information 

regarding the detailed process of collision, and only general parameters (such as the 

friction and restitution coefficients) are obtained from these experiments (Schmeeckle et 

al., 2001). 

When the number density of the particles and the collision frequency are 

sufficiently large, inter-particle collisions can be modeled as a stochastic model 

(Sommerfeld, 2001). These models usually rely on generating a fictitious collision 

partner and the calculation of the collision probability according to the gas kinetic theory. 

On the other hand, when the density number of the particles is small, inter-particle 

collision can be computed directly by estimating the occurrence of collisions from 

particle trajectories and computing the velocity changes according to momentum and 

energy conservations laws. In the present study, the latter approach is considered by 

using an extension of the Tsuji et al. (1985) algorithm for particles colliding with a wall, 

presented by Crowe et al. (1998) for the case of two moving particles colliding. 

2.6 Turbulence Effect on Bed Load Transport 

In the most recent numerical simulations for particles moving in saltation mode 

(Lee and Hsu, 1994; Nino and Garcia, 1994; Hu and Hui, 1996; Lee et al., 2006; 
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Lukerchenko et al., 2006; Lee et al., 2006) the velocity field has been represented using a 

logarithmic expression, which is a very good approximation of the average flow 

conditions in open channels. In addition, sedimentary structures such us bedload sheets, 

are produced by a spatially and temporally variable sediment transport resulting from the 

interaction of a turbulent flow with sediment grains in an erodible bed (Heathershaw and 

Thome, 1985; Best, 1992; Nelson et al., 1995; Mazumder, 2000; Schmeeckle and Nelson, 

2003). Therefore, to improve the prediction capability of numerical simulations of bed 

load transport it is necessary to provide a velocity field capable of reproducing the 

turbulence characteristic of natural open-channel flows. 

The use of detailed 3-D flow models (obtained with LES, DNS) integrated to 

models for the simulation of suspended or bed load sediments transport in fluvial 

environments is relatively limited (Keylock et al., 2005). For suspended solids, a few 3-D 

models that incorporate flow unsteadiness (Yost and Katopodes, 1996; Zedler and Street, 

2001) correspond to early attempts to study the effect of turbulence on sediment 

transport. For bed load transport, to the best the writer's knowledge, no research resolving 

an unsteady velocity field has been presented. A first attempt to introduce variability in 

the velocity field around particles saltating close to a fixed bed was presented by 

Schmeeckle and Nelson (2003). In that study, the instantaneous velocity was obtained 

from near-bed measurements. 

2.7 Experimental Data Available 

Experiments providing detailed information of individual particle trajectories in 

bed load motion are scarce. Although several studies have offered information on particle 
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saltation velocity (up) in the 70s and 80s (Gordon et al., 1972; Fernandez-Luque and van 

Beek, 1976; Arbulieva et al., 1987; Sutsepin, 1987) none of them has included other 

properties of the saltation phenomenon such as jump length (L ) and height (H ). 

The most recent experiments containing detailed information on the trajectories of 

particles saltating in water are those by Nino et al. (1994), Lee (1993), Lee and Hsu 

(1994), Nino and Garcia (1998a,b) and Lee et al. (2006). The main characteristics of 

these experiments are presented in Table 2-3. The experimental results of Nino and 

Garcia (1998b) show somewhat unexpected values for the particle mean velocity in the 

stream-wise direction. It is expected that, as the value of r* increases, the value of the 

stream-wise particle velocity up also increases; however, the experimental results follow 

an almost constant line. The same quasi-constant trend is also observed in the 

measurements of the particle jump height, which is also expected to increase as the value 

of T* increases. In the case of the experiments by Lee (1993), Lee and Hsu (1994) and 

Lee et al. (2006) the values of H, L and up increase as the value of r* increases, as 

expected. 

For the particle rotation the experimental data is even more scarce. Data of the 

average particle spinning in the span-wise axis (ruy) is presented in Nino and Garcia 

(1998a) for particles of sand size, and in Lee and Hsu (1996) for larger particles (Table 2-

3). 

The values of the e friction ( / ) and restitution (e) coefficients (see Chapter 3 for 

definition) are not always readily available from experiments. They highly depend on the 

material of the saltating particle and on the flow conditions; therefore, it is not possible to 



26 

provide general values. For natural sediments, Nino and Garcia (1998a) showed that the 

value of the friction coefficient is relatively constant and equal to 0.89, but the value of 

the restitution coefficient varies between 0.5 and 0.2 depending of the flow conditions 

(Nino and Garcia, 1998a). Schmeeckle et al. (2001) used values of 0.1 and 0.65 for the 

friction and restitution coefficients, respectively, obtained also from experiments in a 

turbulent channel with natural sediments. Tsuji et al. (1987) considered polystyrene 

particles moving in a gas flow and used a value of 0.8 and 0.4 for both e and / , 

respectively. For non-spherical particles, Shen et al. (1989) employed values of 0.95 and 

0.3 for the same coefficients. 

Table 2-3: Characteristics of experimental results of saltating particles. 

Author 

Nino et al. 
1994 

Lee and 
Hsu 

(1996) 

Nino and 
Garcia 

(1998a,b) 

Lee et al. 
(2000) 

Lee and 
Hsu 

(1994) 

Lee et al. 
(2006) 

Recording 
device 

Standard 
video camera 

High-speed 
photography 

High-speed 
video camera 

Standard 
video camera 

Standard 
video camera 

Standard 
video camera 

Particle 
size 

(mm) 

15-31 

4.76-
6.54 

0.5-0.8 

6 

1.36-
2.47 

0.6 

Number of 
jumps 

considered 

80 

800 

1-2 jumps 
for 100 

particles 

No 
information 

available 

No 
information 

available 

No 
information 

available 

ut (m/s) 

0.14-0.23 

0.066-
0.102 

0.021-
0.026 

0.038-
0.054 

0.036-
0.105 

0.039-
0.068 

Data available 

Average and 
standard deviation 
of H, L and up 

Average my 

Average and 
standard deviation 
of H, L, up and 

Average of H, L 
and u„ 

Average of H, L 
and Up 

Average of H, L 
and u„ 
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2.8 Global Evaluation and Knowledge Gaps 

Based on the above assessment, it is noticed that particle-laden flows have been 

studied using the two-phase flow theory mostly in gas flows, for isotropic and 

homogeneous turbulence, zero-volume particles, and dilute mixtures. They have not been 

employed much to address the motion of particles in rivers or open channels where the 

turbulence is neither isotropic nor homogeneous. Particles in gas flows present also a 

different response time. 

Sediment transport under natural conditions presents characteristics that can be 

simulated by numerical means using the two-phase flow theory. Complex issues that 

need to be addressed in this problem are related to the interaction among particles and the 

turbulent nature of any natural flow. 

Most of particle tracking and collision models presented before are two-

dimensional in nature. More understanding of the flow can be gathered through DNS or 

LES velocity fields, linked to a 3-D particle tracking code and a collision algorithm 

(including a bed-representation sub-model). 

For the 3-D particle tracking code, the relative importance of the forces on a 

particle is dependent upon the particle size. No study, to the best of the writer's 

knowledge, has addressed a wide range of particle sizes. 

In the case of wall-collision algorithms, the disagreement among researchers is 

centered on how to include in an algorithm the shape of the bouncing particle and the 

intrinsic roughness of the wall in a physically-meaningful way, thereby providing a 

realistic approximation of what is observed in nature. In addition to collisions of particles 
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with beds of rivers, several applications coming from the mechanical engineering field 

have prompted the development of collision models for industrial purposes. To the best 

of the writer's knowledge, no systematic study has addressed the accuracy of proposed 

algorithms of collision with the wall, nor the ranges of validity of the diverse coefficients 

involved. 

One problem associated with the papers related to natural sediment moving in 

open channels (Sekine and Kikkawa, 1992; Nino and Garcia, 1994, 1996, 1998a,b; and 

Schmeeckle and Nelson, 2003) is that the fluid flow has been considered to be unaffected 

by the presence of the moving particles, and it has been assumed to be represented by the 

law of the wall, without spatial/temporal fluctuating components. The benefits of using 

this methodology are clear: it imposes the fluid velocity as a time independent known 

condition for the problem. However, in order to improve the approximations of the 

transport of sediment as bed load, it is necessary to model more accurately the fluid flow-

sediment particle interaction. A numerical simulation involving both interacting phases 

(solid and liquid) appears as a requisite in order to obtain more accurate predictions. 

A first step is to consider a one-way coupling simulation, where the carrier 

velocity field is simulated, including the turbulence dynamics. The effect of the 

turbulence on particles in bed load motion has not been studied in detail, to the best of the 

author's knowledge. 
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CHAPTER 3 

TWO-DIMENSIONAL PARTICLE TRACKING MODEL 

3.1 General Considerations 

The Eulerian-Lagrangian representation of the two-phase flow under study 

requires a particle tracking model able to describe the position of each particle at each 

time step. Using the Newton's second law, and numerical approximations, the position, 

velocity, and acceleration of the particle are calculated using the forces acting on each 

particle. As a first step, a two-dimensional (2-D) theoretical particle model presented by 

Nino and Garcia (1994) was used to develop a computational code to track the position of 

one particle. After its validation, several issues regarding the particle collision with the 

wall and the computation of the forces driving the particle motion were addressed. 

Given some initial conditions, the expressions provided by Nino and Garcia can 

be integrated over time to obtain the particle trajectory and velocities in the stream-wise 

and wall-normal directions. In spite of the detailed inclusion of all forces affecting the 

particle trajectory, there still remain some issues that need to be defined and discussed. 

For instance, the values of the coefficients of drag, lift, and virtual mass are assumed in 

the model to be known and well defined. However, there is disagreement among authors 

on how to estimate those values, and on the values themselves. 

The Basset term involves additional difficulties for the numerical integration 

because the denominator in the integrand vanishes when the upper integration limit is 

enforced. Also, the Basset integral considers the integration of the particle acceleration 

from the beginning of its motion, which leads to important computational memory 
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requirements and large computing time. These factors could make the calculation 

inviable. 

3.2 Two-Dimensional Particle Tracking Model 

One of the most recent and complete forms of the governing equation for the 

motion of a small spherical particle in an unbounded fluid (within the Stokes drag range) 

was presented by Mei et al. (1991), based on the equations proposed earlier by Maxley 

and Riley (1983): 

s dt s d\n ) \dx\ 

pjuY2'?d (- - 1 , 2 _ 2 ^ dr Dv 
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VT7 Dt 
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v-u + —dy'v 

v 24 p j 
11 
d2 

p 

(~ -, i ^ 
w - v - — d2

nS/2v 
V 24 p j 

(3-1) 

where p and ps denote fluid and particle density, respectively; u and v indicate the 

particle and fluid velocity vectors, respectively; JJ. refers to the dynamic viscosity; Cm 

denotes the added mass coefficient; d„ indicates particle diameter; g is the vector of 

gravity acceleration; t denotes time, and r is a dummy variable for integration. The 

terms on the right hand side of Eq. (3-1) correspond to the following forces per unit 

volume, respectively: buoyancy force, Basset history force, the forces due fluid 

acceleration, virtual mass, and Stokes drag. The operator D^)/Dt indicates the material 

derivative using the fluid velocity in the advective term, as opposed to the material 

derivative using the particle velocity ind()/dt. 
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Considering the Reynolds decomposition of the particle velocity (u = ua +u\ 

where ua and u' represent the particle mean velocity vector (averaged over the 

turbulence) and particle velocity fluctuation vector respectively), and for the fluid 

velocity (v = va + v' where va and v', represent the fluid mean velocity vector and fluid 

velocity fluctuation vector respectively) expression (3-1) is replaced by: 
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Averaging over the turbulence, neglecting second order terms (such as V v ) and 

fluid acceleration terms, the following expression is obtained: 

dt? , ^ 18/- : -r\ 9 f 

Ps i^^-P^-7)^Y0.7)*L.,^-7) 
(3-3) 

Second order terms are normally small compared with the other terms. Using 

dimensional analysis of the term d2
pJ2AV2v , it is possible to scale it as &d2 u/l2, 

where u is a velocity scale and / is an arbitrary length scale. Assuming / is equal to the 

average particle jump length, experimental data of Nino and Garcia (1998 a,b) shows that 

the fraction {dp/if is of the order of 10"2 , indicating that the zero order term (ua) is a 
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hundred times larger than the corresponding second order term, validating the 

simplification of the latter term. 

Because Eq. (3-1) considers only linear drag, it is only valid when the particle 

Reynold number (Re = d lv, where v is the kinematic viscosity of the fluid and 

u" = u" - va is the particle relative velocity vector) is much smaller than one. To extend 

the governing equation in a way to make it applicable to larger particles and higher 

velocities (i.e., larger Reynolds numbers), the linear drag force needs to be replaced by 

the following non-linear form (Nino and Garcia, 1994): 

£?-v) (3-4) 3 C 
Ad/ 

ua-va 

where CD is the drag coefficient. 

Considering that the gradients of mean flow velocity in the vertical direction are 

large in the region close to the bed (as opposed to those in the horizontal direction) and 

because the particle sizes considered in this study cover a wide range, a lift force in the 

vertical component must be taken into account. Following Wiberg and Smith (1985), the 

lift term to be added in the right hand side of Eq. (3-3) is: 

3 C 
~P 

Ad 
p 

u. 
2 

T 

2 \ 

(3-5) 

where the sub indices T and B denote particle top and bottom, respectively, and CL is 

the lift coefficient. 

Eventually, the rotation of the saltating particle can introduce another force in the 

vertical direction, known as the Magnus force or rotational lift (as presented in Gupta and 

Pagalthivarthi, 2006, for instance). White and Schulz (1977) added a term in the right 
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hand side of Eq. (3-3), derived from the original expression of Rubinow and Keller 

(1961): 

Q 
1 du} 

2 dz 
(3-6) 

where Q denotes the particle angular velocity in the transverse direction, uf is the time-

averaged stream-wise component of the fluid velocity and z represents the wall-normal 

direction. 

Adding lift and Magnus terms to Eq. (3-3), the acceleration of a particle immersed 

in a velocity field can be calculated using the following expression: 

dr 
+ 

9 fpMV2 

+ ̂ -MH 
2V 3 , 

Q 

*Jt-T 

2 dz 
(3-7) 

where z is the unit vector in the wall normal direction. After some arrangements, a new 

expression is obtained: 

l i n\d~u" I i , r 3Coh ~Yl 9(vY2'(dh -l\ dr 

+cA7- +
 3-^ 

dt Ad 

f\—.a 
ua: 

P \ T 

P 

2K3 

z + — 
Q 

13uf y 
2 dz f 

(3-8) 

The local mean flow velocity in the stream-wise direction can be specified by 

using the semi-logarithmic law for turbulent open-channel flows, considering all cases of 

fully-rough, smooth, and transitional flows, according to whether k£ = (ks u*)/v is 

larger than 70, smaller than 5, or in between those values, respectively (White, 1974; 

Nino and Garcia, 1994, 1998). (In the equation above, ks is a measure of the roughness 
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of the wall, and w» the wall-friction velocity. Eq. (3-8) involves in fact 3 equations, one 

for each of the three directions (the stream-wise, wall-normal and span-wise directions). 

The proposed velocity field is 2-D, and it could be assumed that the particle motion in the 

span-wise direction in negligible. Defining the particle diameter dp as the length scale 

and the wall-friction velocity u as the velocity scale, the above equation can be recast in 

dimensionless terms in the directions x and z as follows: 

du sin0 3 
— - = a 
dt T, 4 

-aCD\up-uf) 
duf 9a 'fd 

^R~ri 
\^uf~up) 

dt 

4 -dr V^-i 

(3-9) 
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( 1 du \ 
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v
 y 2 dz j 

(3-10) 

In (3-9) and (3-10), up =ua/u, and wp =w"/u» are the dimensionless particle 

velocity in the stream-wise and wall-normal directions (Fig. 3-1, where ua and w" are 

the stream-wise and wall normal components of ua ); uf - uf/ut is the dimensionless, 

stream-wise component of the fluid velocity; ur is the dimensionless particle relative 

vector; T* is given by u* /\gRdp); g is the acceleration of gravity; R„ equals 

\Rgdpj jv\ my equals Q.dpju ; and a = {l + R + Cm)~'. Eqs. (3-9) and (3-10) were 

used by Nino and Garcia (1994) in their model of gravel bed load (1994) and sand bed 

load (1998b) transport. 
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Figure 3-1: Definition sketch for saltating particle in 2-D. 

Mathematically, this is an initial-value problem for which initial conditions are 

needed. After computing the velocities, the positions of the particles are determined by 

simple numerical integration. It can be noticed that the integral contained in the Basset 

term becomes improper when evaluated in the upper integration limit. Nino and Garcia 

used the approximation proposed by Brush et al. (1964) to overcome that problem, 

dividing the integral in two terms. 

duri dur 
t-St dufl dupi 

3 dx, dt 
(3-11) 

with 81 denoting the time step employed in the numerical solution, and i indicating the 

component x or z . Summation on j is implied in (3-11). 
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The angular velocity is an external variable that must be estimated a priori in the 

Nino and Garcia (1994) model. They used an expression obtained from laboratory 

experiments (Nino and Garcia, 1998a) to estimate the value of my as: 

my =5 .11-1 .13— (3-12) 

where r»c denotes the critical, threshold value of the dimensionless bed shear stress for 

the initiation of motion, which was estimated using the Shield's curve (Shield, 1936). 

3.2.1 Drag, Lift and Virtual Mass Coefficients 

The value of the drag coefficient CD for a sphere is a function of the flow 

24 
Reynolds number. For creeping flow, the drag coefficient can be computed as CD -

Rep 

(Oseen, 1927), valid only in the Stokes range. Unfortunately, the behavior of CD for 

unsteady particle motion is not completely known (Yen, 1992) and the only alternative is 

to estimate it as that of a single, free-falling sphere. To increase the range of applicability 

of this coefficient, several authors have proposed different expressions. Rubey (1933) 

proposed a simple approximation to the drag coefficient: 

24 
CD=—- + 2 (3-13) 

Rep 

The expression derived by Engelund and Hansen (1967) is best suited to natural 

sands and gravels: 

24 
CD= — + 1.5 (3-14) 

Rep 
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According to Karamanev (2001), one of the best correlations with experimental 

results for a freely settling or rising sphere was proposed by Turton and Levenspiel 

(1986): 

24 L „«<,\ 0.413 
CD = 

Re, 
(l + 0.173Re°D

6257)+ 
v p ' 1 + 1. 163x104 Re 4r> -1.09 

(3-15) 

The approximation proposed by Yen (1992) for the drag coefficient has been used 

before for the motion of saltating particles (Nino and Garcia, 1998b; Lukerchenko et al., 

2006): 

24 L „ .. cr- \ 0.208 
CD = 

Re. 
(l + 0.15VRep +0.017ReJ 

104Re -0.5 (3-16) 
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Figure 3-2: Comparison of different expressions for the drag coefficient. 

Fig 3-2 shows a comparison of the different expressions for the drag coefficient. 

The largest differences among the diverse formulations occur when the value of Rep is 

beyond, say, 10 , where the relative differences between the largest value of the drag 

coefficient (using Rubey's equation) and the smallest drag coefficient (using Yen's 
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equation) is about 30%. The expressions by Turton and Levenspiel (1986) and Yen 

(1992) produce very close results. Considering the wide use of Yen's predictor in the 

computation of the drag force in Lagrangian models for natural sediments, the present 

work adopts such formulation. 

The effect of turbulence on the drag force acting on a particle was studied by 

Bagchi and Balachandar (2003), comparing time dependent expressions of the drag force 

obtained with DNS with predictions based on standard drag correlations. They concluded 

that no significant difference can be found between both approaches; therefore the use of 

the mean relative velocity to compute the drag coefficient, as it is used in this thesis, 

provide a reasonable accurate result for estimating the drag force. 

Different expressions for the lift force and the lift coefficient can be found in 

literature. A comparative study of the effect of the different lift models was presented by 

Gupta and Pagalthivarthi (2006), where significant differences in particle trajectories 

(about 100% in terms of the mean particle jump length) due to the computation of lift 

force were identified. Wiberg and Smith's (1985) method, developed for saltating grains 

in water, provides a simple yet efficient expression to calculate this force with good 

agreement with experimental results (see below). In that study, the lift coefficient was 

considered to be equal to 0.2, the same value that is used in the present study and in 

several others studies (Wiberg and Smith, 1985; Nino and Garcia, 1994, 1998b; Lee et 

al., 2000). Different authors have suggested that CL is not constant (Gupta and 

Pagalthivarthi, 2006; Lee et al., 2006) but varies in narrow margins (usually between 0 

and 0.5). 
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The value of the added mass coefficient for a single sphere moving in a still fluid 

at infinity is obtained in a now classic derivation in fluid mechanics; this value is 

Cm = 1/2 (see Panton, 1996, page 576). This value of Cm has been widely used to 

calculate the added mass force in Lagrangian models of particle motion in boundary 

layers (Maxley and Riley, 1993; Mei et al., 1991; Schmeeckle and Nelson, 2003), even 

though its range of applicability is limited to spheres that translate but do not rotate, and 

to flows in which the irrotational hypothesis is applicable. 

Several studies have been developed to calculate the added mass coefficient under 

different velocity fields, mainly for spheres or sphere-like bodies. These studies have 

shown that an added mass coefficient equal to Cm = 1/2 is not adequate for all cases. 

Drew and Lahey (1987) derived an expression for the virtual mass force for a single 

sphere which is accelerating and undergoing a constant rotation in an inviscid, 

incompressible flow. In this case, they obtained an added mass coefficient equal to 0.5; 

however, they acknowledged previous works that suggested that the coefficient must 

depend on the particle rotation. Storti and D'Elia (2001) used a semi-numerical 

computation for the added mass coefficient of an oscillating hemi-sphere at different 

frequencies. The values for the added mass coefficient obtained varied between 0.5 and 

0.14 (surge mode) and between 0.8 and 0.5 (heave mode). The first and last values 

represent the hemi-sphere oscillating at a very low and very high frequencies, 

respectively. Sankaranarayanan et al. (2002) obtained the virtual mass coefficient for 

rising isolated bubbles as a function of the aspect ratio of the bubbles. For spherical 

bubbles, the added mass coefficient varied between 0.5 and 1.5; for distorted bubbles, the 

variation of the coefficient was between 0.5 and 4.5, depending of the bubble volume or 
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area fraction. Kendoush (2005) used the velocity flow field induced by a rotating sphere 

to derive a value of Cm equal to 5 when a sphere rotates around its axis, but does not 

translate. 

For simplicity, the value of the Cm was assumed to be equal to 0.5, as several 

particle tracking models have done previously (Nino and Garcia, 1994, 1998b; Yeganeh 

et al, 2000; Schmeeckle and Nelson, 2003; Lukerchenko et al., 2006) 

3.2.2 Two-Dimensional Particle-Wall Collision Algorithm 

Garcia and Nino (1992) proposed a simple two-dimensional, wall-particle 

rebound model. The situation presented in Fig. 3-3 is considered, where a saltating 

particle approaching the bed at an angle 9in strikes the surface that faces upstream with 

and angle Ob. The particle velocity is resolved into normal and tangential components 

with respect to the collision surface, u„\in and ut\in, respectively, and it is assumed that 

these components are reduced after the collision, such that 

z 

Figure 3-3: Wall collision parameters. Two-dimensional approach. Lateral view. 
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"»M =fUn\in ( 3 " 1 7 ) 

u<\ou,=eu,\m (3"18) 

where e and/denote the restitution and friction coefficients, respectively, and un\mt and 

Ut\out represent the velocity components of the particle immediately after the collision. In 

such a case, the particle rebounds with an angle dr, leading to: 

tan{er) = jtan(ein+6b) (3-19) 

Using this equation, the particle dimensionless velocity components immediately 

after the collision (indicated with the superscript A) can be expressed in terms of the 

particle dimensionless velocity components immediately before the collision (indicated 

with the superscript ~) as follows: 

« , = / ( * > v ; r c o s ( 0 , „ + 0 4 ) * ^ ) (3-20) 
cos\Br) 

v/f^^r-c.^.)^1 (3-20 

To complete the particle-wall collision algorithm, a bed roughness representation 

is required to reproduce the randomness in the saltating process. Garcia and Nino (1992) 

assumed that the bed is formed by uniformly pack spheres as is shown in Fig. 3-3, and 

considered a bed particle conditional probability density function p( B^ \ B{n) of an angle 

Bf, for a given value of Bin. Geometrical considerations dictate that the angle Bb can 

vary from a maximum of 30° at the upstream side of the particle to a minimum of-30° at 

the downstream side of the particle. The set of angles within the range is mapped into a 
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set of values r, along a vertical line passing through the center of the particle (see Fig.3-

3). The probability density of the rx value is assumed to be uniform, which is equivalent 

to assume that the considered particle has a uniform probability of being located 

anywhere in the bed. The following geometrical relationship among 0b, 6in and rx is 

established 

rx = ^- (cosfe ) - tanfo )sinfa )) (3-22) 

3.3 Model Validation 

Nino and Garcia's (1994) model describing the particle trajectory as explained 

above, together with the sub-model for the rebound with a wall, and the bed roughness 

representation were implemented in a computational code as part of this thesis. The code 

can be found in Appendix A. The code provides the particle position at every time step 

depending of the flow conditions, given by the value of r», and the particle 

characteristics, given by the value of Rp. The code was written using the Fortran 

language, in such a way that the user decides whether to include or not the effect of one 

specific force in the computation of the particle trajectory. The code is composed by a 

main program, which reads from an external file the characteristic of the flow, particle 

size and number of particles of the desired run, and calls several specific subroutines. 

Some of the subroutines were obtained from Press et al. (1992) (such as the random 

number generator and the Gamma function subroutines), but most of them were 

developed and tested by the writer. 
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The particle position is directly obtained by integrating the Eqs. (3-9) and (3-10) 

using a fourth-order Runge-Kutta method (Isaacson and Keller, 1993). The accuracy of 

the prediction depends only of time step used for the integration. 

A simple test was designed to check the convergence of the model. A particle of 

0.8 mm of diameter of natural sediment (^=100) moves along the bottom of a channel 

with a flow of x* equal to 0.056 and its trajectory is computed using a dimensionless time 

step equal to dt. The dimensionless height (H) and length (Z) (by using the particle 

diameter as a length scale) of an individual jump is recorded and compared with the 

results obtained with a simulation using half of the original time step (dimensionless). 

The same procedure is applied repeatedly until the values of H and L are relatively close 

between one simulation and the next. The results are presented in Table 3-1. 

The first results show a large difference between the values of H and L in two 

consecutives runs. These differences (AH and AL) decrease as the value of dt 

decreases, confirming the convergence of the simulation results. It is also noticed that the 

computational time required to run these simulations increases fast: the computational 

time consumed for the largest values of dt corresponds to fractions of a second; however , 

for smallest values of dt (10"4) the simulation required around two minutes to solve the 

same problem (consider here that this time is for a single jump). Assuming that the "true" 

value of the jump length and height is given by 1.44338 and 5.76954 respectively (values 

obtained for dt equal to 10"4), a value of dt equal to 10"3 is chosen in order to achieve 

less than 0.1% of error in the trajectory computations. This value of dt will be used in all 

the simulations presented in the following sections. 
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Table 3-1: Comparison of the dimensionless jump height (H) and length (L ) due to the change in 
the model discretization time dt. i? =100, T* =0.056. 

dt 

0.2 
0.1 

0.05 
0.025 
0.0125 
0.0063 
0.0031 
0.0016 
0.0008 
0.0004 
0.0002 
0.0001 

Dimensionless 
Jump Height (H) 

1.887350 
1.630320 
1.521670 
1.476511 
1.457386 
1.449019 
1.445418 
1.443925 
1.443401 
1.443277 
1.443306 
1.443383 

Dimensionless 
Jump Length ( L ) 

6.329901 
6.247470 
5.894048 
5.873639 
5.785197 
5.779334 
5.783846 
5.774705 
5.771622 
5.770566 
5.769560 
5.769542 

Change in 
Height (\H) 

-

-0.25703 
-0.10865 
-0.04516 
-0.01912 
-0.00837 
-0.00360 
-0.00149 
-0.00052 
-0.00012 
0.00003 
0.00008 

Change in 
Length (AZ) 

-

-0.08243 
-0.35342 
-0.02041 
-0.08844 
-0.00586 
0.00451 
-0.00914 
-0.00308 
-0.00106 
-0.00101 
-0.00002 

To validate the performance of the model during one jump, the experimental 

results provided by Nino and Garcia (1998) were considered. In this case, natural 

sediment particles (i? =1.65) of 0.6-0.8 mm of diameter (Rp =50-80) were placed in a 

horizontal channel, where water flows with shear velocities ranging from to 0.02 to 0.03 

m/s (r» =0.056-0.095). The trajectories of the particles were recorded using a video 

camera placed in a specific location of the channel. Figs. 3-4 to 3-6 show the 

experimental results obtained from these experiments. Using the same flow and particle 

conditions, the model was run considering the action of: (1) buoyancy, drag, virtual mass 

and Magnus forces, (2) the previous forces plus lift and (3) the forces stated in (1) plus 

the Basset force and finally (4) all forces in (1) plus lift and Basset. The results obtained 

from the model show that it is necessary to include all forces to produce an accurate 

prediction of the particle position in the sand range of particle sizes. 
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Figure 3-4: Comparison of predictions of the particle free-flight sub-model with data obtained by 
Nino and Garcia (1998b) for sands. Distances are made non-dimensional by using the particle 

diameter. Single jump case, d =0.6 mm; W, =0.025 m/s. 
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Figure 3-5: Comparison of predictions of the particle free-flight sub-model with data obtained by 
Nino and Garcia (1998b) for sands. Distances are made non-dimensional by using the particle 

diameter. Single jump case, d =0.8 mm; u, =0.027 m/s. 



46 

2.5 

« 
o 

ta
n 

en 
"O 
i——< 

al 
O 
•e 
<u 
> 
« <Z> 
(i; 
C 
o 
Xfl 
C 
(U 

a 

2 

1.5 

1 

0.5 

-

• • 
• - - « 

• > r ^ ^ ^ - ^ 
/ ^ x \ 

Without Lift or 
Basset force 
With Lift force but no 
Basset force 

but no Lift 
With Lift and Basset 
forces 

• N&G 1998b Rp=70 

4 6 8 

Dimensionless horizontal distance 

10 12 

Figure 3-6: Comparison of predictions of the particle free-flight sub-model with data obtained by 
Nino and Garcia (1998b) for sands. Distances are made non-dimensional by using the particle 

diameter. Single jump case. 6? =0.7 mm; M, =0.032 m/s. 

In a different set of experiments, Nino and Garcia (1994) recorded the trajectories 

of particles of gravel size. In this case, the particle diameter considered was dp =30 mm 

and a wall-friction velocity of 0.22 m/s. Fig. 3-7 shows the results obtained 

experimentally and the simulated particle trajectory when considering: (1) all forces 

except the Magnus force, (2) all forces but the Magnus and Basset forces and (3) all 

terms except the Magnus, Basset and lift forces. In this case, it is concluded that only the 

lift force plays a significant role in determining the particle trajectory. Therefore, the 

Basset and Magnus forces can be disregarded in the simulations. The previous findings 

agree with the conclusions obtained by Nino and Garcia (1994) and they also confirm the 

fact that for larger particles the Basset force can be neglected, but not for small size 

particles. 
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Figure 3-7: Comparison of predictions of the particle free-flight sub-model with data obtained by 
Nino et al. (1994) for gravels. Distances are made non-dimensional by using the particle diameter. 

Single jump case, d =30 mm; w»=0.22m/s. 

3.4 Relative Importance of the Forces on the Particle Trajectory 

The relative importance of each intervening force in the particle trajectory is 

presented in Fig. 3-8, for a sand-size particle (R =73). The relative weight of each force 

(in absolute value) is expressed with respect to the total force exerted on the particle, as a 

function of the particle height relative to each jump height when it moves upwards and 

downwards. The figure shows the average value obtained when simulating the particle 

motion for a large simulation time (equivalent to more than 100 particle jumps). It is 

observed that the importance of each force depends on the particle position within the 

jump, as expected. 

Drag and buoyancy are the most important forces driving the particle motion, also 

as expected, accounting for more than 50% of the total force acting on the particle. 

Despite being a force with a constant value along the particle trajectory, buoyancy 

changes its percentage with respect to the total force while the particle rises from the bed, 
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but remains relatively constant when the particle falls. The relative importance of the 

drag force is very similar when the particle moves upwards and downwards. 

Basset and virtual mass forces become more important close to the bottom of the 

bed, where the particle acceleration is bigger. Basset force plays an important role when 

the particle starts a new jump and is very close to the bed and its importance decreases as 

the particle moves through the fluid. On the other hand, lift and Magnus forces play a 

relatively small role. Magnus force becomes more relevant when the particle moves 

relatively far from the wall. 

When increasing the flow velocity parameters, the particle dimensionless jump 

height and length increase as expected (discussed in more detail in Chapter 4), but the 

relative importance of the different forces remains approximately the same. Fig. 3-8 also 

shows the relative importance of the Basset force for small particles, as it was addressed 

in the previous section. A study devoted to optimize the computation of this force is 

presented in the next section. 

Fig. 3-9 shows the relative weight of each force with respect to the total force 

exerted on a particle with Rp=250. Comparison of Fig.3-8 and Fig.3-10 shows that the 

relative importance of the Basset force decreases as the particle becomes larger as is 

expected. The relative importance of the remaining forces are similar for both particle 

sizes, however, the Magnus forces percentage with respect to the total force presents an 

inflection point around zl H equal to 2, that only appears when the ratio T, I T,C is greater 

than 3. 
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Figure 3-8: Force analysis. Rp =73. T, / r*c =2. a) Particle going upwards, b) Particle going 
downwards. 
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Figure 3-9: Force analysis. Rp =250. T, IT*c-2. a) Particle going upwards, b) Particle going 
downwards. 

3.5 Analysis of the Magnus Force 

The 2-D particle tracking model proposed by Nino and Garcia (1994) uses an 

empirical expression to compute the particle rotation (see Eq. (3-12)) and this effect is 

embedded in the calculation of the Magnus force. Extending the use of this model beyond 
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its range of validity (even for particles sizes slightly smaller/larger than the ones used to 

obtain the empirical expression) may or may not provide accurate results. To evaluate 

this, the results obtained via numerical simulation can be compared with the experimental 

data available, in terms of the mean particle jump length ( £ ) and height (H) and the 

average particle stream-wise velocity (up ). 

In the case of smaller particles of Rp=73 (i.e., particles of the range of Nino and 

Garcia's (1998a,b) experiments, where the empirical expression for the particle rotation 

was obtained), the results obtained from the numerical simulations and from the 

experiments presents very good agreement (see Section 4.4 for more detail). 

For larger particles of i? =250 (i.e., particles of the range of Lee and Hsu's 

(1994) experiments) the simulation results and the experimental data available present 

two different trends (see Fig. 3-10). The experimental data show the expected trend 

between the dimensionless parameters (H, L, and up) and the friction velocity r*: as 

the value of T* increases, the flow velocity increases and the particle is capable of 

describing jumps that are higher and longer, and therefore the value of the dimensionless 

parameter studied increases. In turn, the numerical results show that there is a value of r* 

after which the dimensionless particle stream-wise velocity, jump length, and height no 

longer increase. 
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Figure 3-10: Comparison of simulations with experimental data for the case of a particle moving in a 
flume and rebounding with the wall (2-D model). The figure shows results associated with: a) the 

particle jump height (H), b) the particle jump length (L) and c) the particle stream-wise mean 
velocity. Symbols represent mean values and vertical lines indicate two corresponding standard 

deviations. R„ =250. 

The importance of each intervening force in the particle trajectory was studied, in 

an attempt to explain the model behavior. When switching on and off the lift, Basset, and 

virtual mass forces, a change in the magnitude of the dimensionless parameters (H, L 

and Up) is observed, but there is still a value of r* after which the dimensionless 

parameters no longer increase. However, when turning off the Magnus force, the 

following results are obtained: as the friction velocity increases, the value of each 

dimensionless parameter (H, L and up) increases. Therefore, the Magnus force is 

responsible for the model behavior. 
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To study the effect of the shear stress on the Magnus force, Fig. 3-11 shows the 

relative weight of this force with respect to the total force for different friction velocity 

values, as a function of the particle position. From Eq. (3-6), the sign of the Magnus force 

depends on the difference between the particle rotation (obtained from the empirical 

expression) and the value of the derivative of the stream-wise fluid velocity with respect 

to the wall-normal direction, evaluated at the elevation where the particle is located. 
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Figure 3-11: Variation of the Magnus force along the wall-normal direction, for different values of 
the relative shear stress, a) Particle going upwards, b) Particle going downwards. 

For smaller values of the friction velocity ( T»/TC, less than 3), the value of 

particle rotation is larger than the value of the fluid velocity derivative, at every point in 

the vertical. In this case, the sign of the Magnus force is positive and it is maintained 

across the wall-normal direction. As the value of the shear stress increases, the rotation of 

the particle decreases, as calculated by using Eq. (3-12) and eventually, the fluid velocity 

derivative close to the bed (where this value is larger) becomes larger than the particle 

rotation. Thus, the sign of the Magnus forces switches from positive to negative 
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acceleration when the particle is close to the bed. When the particle moves away from the 

wall, the value of the fluid velocity derivative becomes smaller and the Magnus force 

becomes positive again. This change of sign significantly affects the particle acceleration, 

and therefore the particle trajectory: if the Magnus force has a positive sign, it increases 

the particle acceleration making the particle travel further away. On the other hand, when 

the Magnus force becomes negative, the particle acceleration decreases and so does the 

jump length and height. 

It is concluded that the use of the empirical relation given by Nino and Garcia 

(1994) turns out to be valid only for particle with Rp numbers between 60 and 90. 

Therefore, in order to extend the 2-D model for a larger range of particle sizes, it is 

necessary to provide a theoretical expression of the particle rotation to compute more 

accurately the Magnus force. From the previous results, the computation of the rotation 

of the particle is a key factor to correctly estimate the value of the Magnus force. A 

model to calculate the angular velocity of the moving particle is included in the next 

chapter. 

3.6 A New Algorithm to Compute the Basset Term 

To circumvent the improper nature of the Basset integral, several authors have 

used the Brush et al. (1964) approach (Nino and Garcia, 1998b, Lukerchenko et al., 2006) 

as seen in Eq. (3-11). Another standard approach to deal with the singularity of the Basset 

term is to employ specific quadratures such as the Second Euler-Maclaurin summation 

formula (Press et al., 1992), hereafter referred to as the SEML. 
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Tatom (1988) proposed to approximate this term using the Riemman-Liouville 

integral definition of a semi-derivative (SD). The Basset term is calculated as follows: 

dur J-O.5 dur J 

\-p=dT = l{-) , ^f j (3-23) 

where r(-) represents the gamma function (Abramowitz and Stegun, 1970), and a 

denotes the lower limit of integration, equal to 0 in the classical definition of the Basset 

force. The semi-derivative term is calculated using an infinite series form, as found in 

Oldham and Spanier (1974): 

dbf _uJ(t-°Y i v r (*-*) / , k{t-a) 
[d{t-a)]b "™k N J r(-b)h r(k + l)f t--

N 
(3-24) 

where b is an arbitrary value. In this case the value of b is equal to -0.5. This 

methodology was adopted in this work with the objective of reducing the computational 

cost of the Basset term. To the best of the writer's knowledge, this way of computing the 

Basset term has not been incorporated into particle models so far. 

In order to demonstrate the advantages of the proposed methodology, the 

convergence of the semi-derivative approach (SD) is compared with that of the SEML, 

taken verbatim from Press et al. (1992). To that end, two arbitrary functions were 

selected, ur(r) = T3/3 (or, dur(r)/dr = 2r ) and dur(r)/dr = cos(r) to test the 

convergence of both techniques. Both cases have analytical solutions. The Basset integral 

was evaluated between a= 0 and ^=100 for the first function, and between a— 0 and 

^=100 7i 12 for the second function. The comparison of results obtained with the SD and 

the SEML are presented in Tables 3-2 and 3-3 for the first and second function, 

respectively, where it is possible to notice that the SEML provides consistently larger 
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values of the relative error than the SD method, for the same number of points/terms. 

Therefore, the SD converges faster than the SEML. Naturally, the faster convergence for 

a given relative error of the SD leads to savings in the computational cost of the Basset 

term. 

Table 3-2: Relative error of the quadratures associated with the semi-derivative approach and the 
Second Euler-Maclaurin summation formula, when used to compute the Basset integral with 

Ur ( r ) = T / 3 (for different numbers of points/terms). The analytical solution for this case is given 

by: Jt -T{8 t + 4tr + 3TZ)0 , which was evaluated at t =100. The relative error was 

computed as the absolute value of the difference between the numerical and the analytical results of 
the Basset integral multiplied by 100 and divided by the analytical value, for both methodologies. 

Points/ 
Terms 

81 
243 
729 

2,187 
6,561 
19,683 
59,049 
177,147 
531,441 

1,594,323 

Semi-
derivative 

method 

107,490.35 
106,941.09 
106,758.12 
106,697.15 
106,676.83 
106,670.05 
106,667.80 
106,667.04 
106,666.79 
106,666.71 

Second 
Euler-

Maclaurin 
summation 

formula 
99,928.89 
102,783.03 
104,425.68 
105,373.07 
105,919.86 
106,235.50 
106,417.74 
106,522.95 
106,583.69 
106,618.77 

Percentage of 
error semi-
derivative 

0.7722 
0.2573 
0.0857 
0.0286 
0.0095 
0.0032 
0.0011 
0.0004 
0.0001 
0.0000 

Percentage 
of error 
Euler-

Maclaurin 

6.3167 
3.6409 
2.1009 
1.2127 
0.7001 
0.4042 
0.2334 
0.1347 
0.0778 
0.0449 

The convergence of the SD approach was also compared with that of the Brush et 

al.'s method (the two terms) using the Simpson quadrature for the first term (see 

Appendix B). An arbitrary quadratic function aimed at mimicking conditions of relative 

velocity for a saltating particle was selected, for which a simple analytical solution for the 

integral was available. For 5,000 points/terms for instance, the relative error in the SD 

computations as compared to the analytical solution is 0.015, while it is 0.054 for the 

Brush et al.'s method using Simpson quadrature. Those errors reduce to 0.002 and 0.020, 



56 

respectively, for 50,000 points/terms, showing that the SD methodology offers a faster 

convergence. This result is noteworthy since alternative techniques for improper integrals 

often employ standard methods such as Simpson quadrature to undertake the final 

integration after a change of variables (Press et al., 1992). 

Table 3-3: Relative error of the quadratures associated with the semi-derivative approach and the 
Second Euler-Maclaurin summation formula, when used to compute the Basset integral 

d ur ( r ) / dr = cos (T) (for different numbers of points/terms). The analytical solution for this 

case is given by: 

[ , dr = - J2 n \ cos (T) C 
0 ^ { 

T 

Fresnel integrals given by C ( r ) = \cos 

0 

\lJ + sin(r) S\ ^ 

'nz2^ 

V J 

dz and 5 ( 7 ) = \sin 

0 

'nz2^ 

V 
2 

, with the 

dz ; this integral 

was evaluated at t =100 nil. The relative error was computed as the absolute value of the difference 
between the numerical and the analytical results of the Basset integral multiplied by 100 and divided 

by the analytical value, for both methodologies. 

Points/ 
Terms 

81 
243 
729 

2,187 
6,561 
19,683 
59,049 
177,147 
531,441 

1,594,323 

Semi-
derivative 

method 

1.75815554 

1.42522996 
1.31140474 
1.27263337 
1.25959918 
1.25524151 
1.25378748 
1.25330265 
1.25314102 
1.25308714 

Second 
Euler-

Maclaurin 
summation 

formula 
0.36399574 
0.76393412 
0.97209484 
1.09093575 
1.15946342 
1.19902245 
1.22186151 
1.23504761 
1.24266058 
1.24705588 

Percentage of 
error semi-
derivative 

40.309 
13.740 
4.656 
1.562 
0.522 
0.174 
0.058 
0.019 
0.006 
0.002 

Percentage 
of error 
Euler-

Maclaurin 

70.951 
39.035 
22.422 
12.938 
7.469 
4.312 
2.490 
1.437 
0.830 
0.479 

Finally, the SD approach is compared with the approximation proposed by Brush 

et al. (1964) including the two terms for a single particle jump. The objective with this 

comparison is to show that both methodologies produce similar results for the Basset 

force at a given point in a jump. Therefore, it presents the results of the Basset force 
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evaluated after the particle has traveled a jump and is about to hit the bed. In this test, the 

Basset force is computed for every time step until the jump is completed. Given the 

intrinsic differences between results from two quadratures in general, and the 

accumulation of differences every time the Basset force is computed in each time step 

during the jump, the results were not expected to be identical. In this test case, all forces 

except lift and Magnus were included, and involved a particle with Rp =53 moving in a 

flow with r, =0.056. Then, for 10,000 terms in the SD methodology, the differences 

between the values of the Basset force for both techniques are 2.61% for the stream-wise 

component of the force, and 1.21% for the wall-normal component; these differences 

remain almost the same for larger numbers of terms/points. Notwithstanding these small 

differences in the values of the forces, the differences in the values of jump length and 

height between both methodologies are smaller than 0.4% and 0.17%, respectively. This 

indicates that both methodologies provide similar results. 

Overall, the SD methodology reduces the computational cost by approximately 

20% as compared with the alternative methods mentioned above. 

3.6.1 Memory Time Concept 

The integral associated with the Basset force must be performed, by definition, 

between the beginning of times and the current time of computation. However, in most 

previous works on particle motion close to walls, the computation of the Basset force was 

re-set to zero after each rebound against the wall, the justification of which does not seem 

to be based on clear-cut evidence. Between these two limiting procedures, it seems 

plausible that collisions of the particle with the wall may likely eliminate correlation in 
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the development of the boundary layer for jumps separated by "long" distances. 

Therefore, it seems reasonable to assume that only the most recent events influence the 

current particle velocity (see also Mei et al., 1991). Considering the previous argument, a 

new practical definition of the Basset integral is proposed: 

l-dL=dr* J* -fi=dr (3-25) 

0 V ' ~ r t-Tback ^-r 

where Tback represents the time interval during which the history of the particle affects 

the current particle velocity. This definition of the Tback is compatible with the use of the 

SD approach given by Eq. (3-25). (Incidentally, a similar concept was recently and 

independently published by Dorgan and Loth (2007), where a "window model" redefines 

the integration time of the Basset term.) 

The "memory time period" should be related to relevant particle time scales 

and/or flow characteristic times. The behavior of particles moving in fluids is controlled 
,2 

by the particle time scale rp - particle relaxation time - which is defined as xp = — — 

(Crowe et al., 1998). In order to define a flow characteristic time, the flow coherent 

structures that may affect the particle trajectory close to a boundary are considered. 

Experiments with sediment particles by, for example, Grass (1970), Kaftori et al. (1995), 

and Nino and Garcia (1996) have indicated that for smooth walls these structures 

maintain their identity for as long as 60 to 80 wall time units (defined by using d2 Iv as a 

time scale), and extend vertically a distance of about 100 wall units (defined by using 
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v 
Ww, as a length scale). A flow characteristic time: rf =80—, can therefore be 

J ui 

assumed. 

A third time scale can be obtained by manipulating the expression of the Basset 

force in the same way used to obtain the particle time scale tp (see Crowe at al., 1998 

page 23; Groszmann and Rogers, 2004). (Those studies employ zp as a measure of the 

particle adaptation time regardless of whether the particle moves in the Stokes range or 

not. This is also the way it is used in this work, representing a time scale.) The particle 

dup 

response time is directly related to the drag force. The acceleration of the particle 
dt 

in the Stokes range is given by: 

*0L=™>L(J-J) (3-26) 
dt d p, 

p s 

The leading factor in of the relative particle velocity \up -vp of the right-hand side has 

units of time"1, and corresponds to the inverse of the particle response time. Analogously, 

the particle acceleration due to the effect of the Basset force is given by: 

dup _ 9 p_ fv V dup dr (3-271 
dt 2dp ps \n I dr yjt-T 

Using the same velocity and length scale as before (w, and dp, respectively) Eq. 

(3-27) turns into: 

dA=±.£.PiK_£L= (3-28) 
dt 2ut ps V n I dt yjf* _ T 
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The term in front of the integral has units of time05; therefore the representative 

81 v 
time scale for this force can be computed as the square of this term: rB = — — —-. 

v . 
Adopting usual values for R, it is possible to obtain rB « 4 —, which is about 20 times 

smaller than the fluid time scale derived before. It is noteworthy that the structure of both 

flow time scales is the same; after all, coherent structures are also involved in the 

development of the boundary layer due to changes in the relative velocity. 

Two methods are proposed herein to define more precisely the value of Tback 

devised on Eq. (3-25); while one of the methods can be applied to the motion of particles 

at any location, the second method uses the fact that particles "saltate" close to a solid 

boundary. 

Model 1: The memory time Tback is obtained by choosing the biggest value 

between the particle relaxation time, the flow characteristic time, and the Basset time 

scale, and then multiplying it by a factor C. 

Model 2: An alternative definition for Tback can be obtained by considering the 

memory time in terms of a number of previous jumps. If Nback is the number of jumps 

considered in the computation of the Basset term, the value of Tback is defined from the 

beginning of the A^tec/t
thjump. The value of Tback can be estimated by multiplying Nback 

by the mean time duration of the jumps, therefore an equivalent value of C can be 

calculated. 

In principle, these methods could provide different values of Tback, because they 

are related to different integration times. In order to compare the results obtained with 
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both methods, the code was run using the SD approximation for the Basset force along a 

simulation time equal to 1,000 non-dimensional units. (This time provides a significantly 

large number of jumps to study, independently of the initial conditions of the particle.) 

Values for Rp=\00 and r . =0.056 were used. Initial conditions for both methods were 

identical. Since smaller particles "fly" for longer periods, these 1,000 time units are 

equivalent for these flow and particle conditions to approximately 500 particle jumps. 

The stochastic collision model causes the height and length of each jump to have 

different values. Figs. 3-12 present the results obtained in terms of jump length and 

height, respectively. For these simulations, a value of C equal to 100 represents the 

computation of the Basset term from the beginning of the particle movement (t- Tback 

equal to 0). Using just a number of previous steps (which does not possess any specific 

physical meaning) is equally efficient to fixing a number of particle or fluid time scales 

(whichever is larger), clearly indicating that there is a loss of correlation between current 

and previous jumps. 
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Figure 3-12: Comparison of the average jump height (a) and average jump length (b) computed 
using the semi-derivative approximation for the Basset force. Multiple jumps (stochastic collisions). 

R =100. rt =0.056. 
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Three additional sets of simulations were performed covering a wide range of 

values of r, within the range of small particles and a long simulation time (1,000 

dimensionless time units). The flow velocity was varied between 0.07 and 0.5 m/s in the 

simulations. A reference simulation was defined by calculating the Basset integral from 

the beginning of the particle motion, represented with a value of Nback =500. The 

reference simulation provides the value of the Basset integral classically defined, as the 

integration is performed on the entire particle history. Each variable of study (particle 

velocity component and jump length and height), was specified an interval consisting of 

one standard deviation with respect to the average value of the reference simulation 

(drawn as dashed horizontal lines in each figure). This interval helps determining the 

degree of departure of the variables when the Basset integral is computed with a limited 

number of previous jumps. 

The first set of runs used a value of Rp equal to 100 and a value of T, equal to 

0.056. Results are presented in Figs. 3-13. Fig. 3-13a shows that for a value of Nback 

equal to 25 the average dimensionless stream-wise velocity is outside of the reference 

interval. However, all the remaining plots show that for Nback equal to 25 the average 

variable value is inside of this interval, and the range is close to the reference simulation. 

Consequently, values of Nback equal to 25 or 50 particle jumps seem to be "appropriate" 

under these conditions. For these numbers of previous jumps, the computational time is 

reduced to only 70% of the time of the reference simulation. 
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Figure 3-13: Dimensionless jump variables versus number of jumps in the past ( Nback ) included in 
the Basset force computation. Multiple-jump simulation using stochastic collision model. R =100. 

T* =0.056. Dotted lines represent the reference range, a) Dimensionless stream-wise component of the 
velocity, b) Dimensionless wall-normal component of the velocity, c) Dimensionless jump height, d) 

Dimensionless jump length. 

The second set used a value of Rp equal to 100 and a value of rt equal to 0.11. 

The results are presented in Figs. 3-14. Therein, for all the parameters studied, the 

reference range is large enough to contain all the values of Nback evaluated. However, 

selecting a number of jumps between 10 and 25, it is possible to argue that a satisfactory 

compromise between computing time reduction and representation of the integral has 

been achieved. 
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Figure 3-14: Dimensionless jump variables versus number of jumps in the past (Nback ) included in 
the Basset force computation. Multiple-jump simulation using stochastic collision model. R =100. 
T*=0.11. Dotted lines represent the reference range, a) Dimensionless stream-wise component of the 
velocity, b) Dimensionless wall-normal component of the velocity, c) Dimensionless jump height, d) 

Dimensionless jump length. 

The third and last set of runs used a value of Rp =100 and a value of r»=0.28, as 

shown in Fig. 3-15. The total number of jumps obtained for the reference simulation is 

only 22, because the velocity of the flow is large. It is found that the average jump length, 

height and velocity components lie within of the reference interval for relatively low 

values of Nback (about 10 jumps). 
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Figure 3-15: Dimensionless jump variables versus number of jumps in the past ( Nback ) included in 
the Basset force computation. Multiple-jump simulation using stochastic collision model. R =100. 
r , =0.28. Dotted lines represent the reference range, a) Dimensionless stream-wise component of the 
velocity, b) Dimensionless wall-normal component of the velocity, c) Dimensionless jump height, d) 

Dimensionless jump length. 

3.6.2 Time Reduction 

The simulation time directly depends on the value of Nback selected. Table 3-4 

shows the reduction in time for a simulation of 500 particle jumps using different values 

of Nback, as compared with the computational time used in the reference simulation. 

Reductions of 10-20% can be achieved employing about 25 to 50 previous jumps. 

Table 3-4: Decrease in simulation time (in percentage) versus Nback. Run considers 500 particle 

Nback value 

5 
10 
25 
50 
100 

jumps. 
Relative total time 

0.61 
0.64 
0.80 
0.92 
1.00 

Time savings (%) 

38.5 
36.3 
19.7 
8.1 
0.0 
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3.6.3 Global Efficiency of the New Basset Force Approximation 

The use of a semi-derivative (SD) approximation to calculate the Basset integral 

was found to reduce the computational time by 20-30% as compared with Brush et a/.'s 

method. In addition, this method is simple to implement. In addition, it was found that the 

approximation of the Basset force using the Tback concept reduces the computational time 

of the run to about 70 to 90 percent of the original simulation time (time reductions of 30 

to 10%). These time reductions may save days or weeks in large simulations, such as 

those shown in Chapter 5. 

3.7 Assessment of Values for the Friction and Restitution Coefficients 

Due to the big variability on the values of the friction and restitution coefficients 

found in the literature (see Section 2.7 of this thesis) a sensitivity analysis of both 

parameters was performed. The effect of these two coefficients on the particle trajectory 

for a rough bed was studied herein by comparing the length and height of particle jumps 

after hitting the wall (see Figs. 3-16 and 3-17). A particle of Rp =73 was used and the 

Garcia and Nino (1992) bed representation roughness model. The simulation model was 

run long enough to have statistical meaningful values of particle jump length and height. 

From Eq. (3-17), increasing the value of the restitution coefficient produces a relative 

increment in the normal component of the particle velocity leading to higher jumps. On 

the other hand, increasing the friction coefficient leads to a relative increment of the 

tangential component of the particle velocity after the collision. 
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Figure 3-16: Effect of the restitution coefficient e on the particle trajectory after colliding with the 
wall. The value of the friction coefficient f is considered constant and equal to 0.4. Rp =73. a) 

Dimensionless particle jump height, averaged over 100 jumps, b) Dimensionless particle jump length, 
averaged over 100 jumps. 

Figure 3-17: Effect of the friction coefficient f on the particle trajectory after colliding with the 

wall. The value of the restitution coefficient e is considered constant and equal to 0.8. R„ =73. a) 

Dimensionless particle jump height, averaged over 100 jumps, b) Dimensionless particle jump length, 
averaged over 100 jumps. 

As expected, increasing the restitution coefficient (e) produce an increase in the 

wall-normal particle velocity after the collision, leading to jumps which are greater in 

height (Fig. 3-16a) and in length (Fig. 3-16b). In this case, the bed roughness redefines 

the normal and tangential velocity of the particle after the rebound, affecting both jumps 

length and height at the same time. The same effect is seen in Fig. 3-17, where an 

increase in the friction coefficient not only leads to longer jumps, but also higher particle 
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jumps. The change in the average jump length and height values by changing the friction 

coefficient is slightly smaller than the change obtained by adjusting the restitution 

coefficient. 

As shown in Figs. 3-16 and 3-17, by tuning the values of the friction and 

restitution coefficients it is possible to adjust the simulation values of the particle jump 

length and height, and eventually match the numerical results with any experimental data 

set. However, by changing arbitrarily these coefficients, any physical consideration of the 

particle shape or material that those values contain is completely lost. 



69 

CHAPTER 4 

THREE-DIMENSIONAL PARTICLE TRACKING MODEL 

A new 3-D particle trajectory model is presented in this chapter. This model, 

which includes the description of the particle translational and angular velocity in the 3-D 

space, and it was implemented computationally by extending the previously tested 2-D 

code. 

The collision of the particles with the wall in 3-D is addressed in this chapter. A 

comparison between existing collision sub-models is included in this chapter as well. A 

new 3-D bed roughness representation is also presented here, and it is compared with 

other sub-models. 

The code also includes the simultaneous motion of several particles at the same 

time, and inter-particle collisions. Results obtained from this code are presented at the 

end of this chapter. 

4.1 Three-Dimensional Particle Trajectory Model 

Using all the information provided in Chapter 3, it is relatively easy to create a 3-

D particle trajectory model. From the Mei et al.'s expression, Eq. (3-3) was obtained by 

neglecting the second order terms, averaging over the turbulence and increasing the range 

of applicability of the drag force (by the use of a non linear expression). Dividing that 

dp 
expression by the coefficient , a dimensionless vector differential equation to 

u p 
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calculate the particle velocity u under the effects of buoyancy, drag, Basset, virtual 

mass and fluid acceleration is established. 

1 dup dpg 3 
= K—— 

a dt 
CD^P-Uffp-

X + -•rjR^idr 
r d (— —~\ dz 

\Uf —U„ 1—7= 
4t' -T 

+c„ 
duf Du V 
dt + - / 

Dt 
(4-1) 

A 3-D vector expression for the Magnus force presented by Crowe et al. (1998) 

and based on the original work of Rubinow and Keller (1961) is as follows: 

(\~ 
B7y — GT \x(uf-up) (4-2) 

where mf is the dimensionless fluid vorticity vector and x indicates the vector cross 

product. For the lift force, Lee et al. (2006) extended the expression proposed by Wiberg 

and Smith (1985) to a 3-D scenario by projecting the resulting force in the particle 

coordinate system as follows: 

TJ-c — 2 "\ W. f 

V 
ur 

2 

T u 
2 \ J w H+vl 

TJUI+VI ' UP 4u\+vl' 

3 ' 

4 L 

2 \ 

*) 

(4-3) 

where e is a unit vector representing the direction of the lift force. Adding both Magnus 

and lift expressions to Eq. (4-1), the 3-D model describing the particle motion is 

presented as: 

1 du 

a dt 

d g 3 /— —')—- — 
f = R~-2 jCD{up-u/\up-uJ 

U 4 I 
+ • 

T." rjR^J
0dr Jx(M/-^)^r7+c" 

duf 

dt 
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The 3-D model tracks the particle translational velocity given any flow field (Fig. 

4-1). The particle rotation in calculated as presented in Section 4.2 below, to completely 

describe the particle motion in the space. These equations can be integrated in order to 

obtain the particle trajectory using the same procedure presented for the two dimensional 

model. The results obtained for the Basset term approximation is also applied in this case. 

Figure 4-1: Definition sketch for saltating particle in 3-D. 

In previous papers (Schmeecklee et al. 2003, Lee et al., 2006), similar equations 

to (4-4) were used by neglecting some terms and simplifying others via convenient 

hypothesis concerning the uniformity of the velocity profile in the transverse direction. 

No turbulence was considered in those papers. 
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In a turbulent velocity field, it is no possible to simplify any term from Eq. (4-4) 

and the complete expression must be used. For simplicity, in this chapter it will be 

assumed that the velocity field is provided by the law of the wall expression, to study the 

main characteristics of the particle motion. Therefore, the following expression 

describing the dimensionless span-wise component of the particle velocity (vp) is added 

to Eqs. (3-9) and (3-10): 

£~HW Ur 
9a 'r d dt 

^7CTPTY* ldT "' J^-T 
(4-5) 

The following facts were considered to obtain Eq. (4-5): a) the components of the 

lift and virtual-mass forces in the transverse direction are identically zero because the 

velocity profile was assumed to be uniform in the transverse direction (see Chapter 3); b) 

the components of the Magnus and lift forces in the transverse direction were neglected 

on grounds that the particle relative rotation vector has small components other than the 

my (see Section 4.2). These facts were corroborated by simulating a particle jump under 

the same flow conditions with both the complete and the simplified expressions for both 

lift and Magnus forces. The complete expression is given by Eq. (4-6): 

1 dup _Rdpg 

a dt 
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— —\ 3 ^ r -\uf-up) + -C, 
f 

V 

—. 
ur 

2 

T 

. 
u 

2 \ 

BJ 

du f 

dt 

(4-6) 

Tables 4-1 and 4-2 presents the results obtained for two particle sizes of interest 

and for 5 flow conditions each, showing that in the case of lift force the differences 

between both method are negligible. In the case of Magnus force, the differences in terms 
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of dimensionless particle jump height and length are reasonable small (less than 3%) 

between the complete and simplified expressions. 

Table 4-1: Comparison of results of 3-D particle-tracking model in terms of change in the particle 
jump characteristics when complete (Eq. 4-6) and simplified (Eq. 4-5) lift force expressions are used. 

A represent s the percentage of change of the simplified expression relative to the complete 
expression. 

Rp 

73 

250 

r. 

1 
1.5 
2 

2.5 
3 
1 

1.5 
2 

2.5 
3 

Complete 
Magnus Exp. 

H 
0.179 
0.273 
0.374 
0.490 
0.602 
0.209 
0.347 
0.486 
1.084 
1.315 

L 
2.224 
3.776 
5.690 
8.167 
10.776 
2.644 
4.689 
7.361 
16.218 
21.296 

Simplified 
Magnus Exp. 

H 
0.175 
0.268 
0.369 
0.478 
0.592 
0.209 
0.339 
0.474 
1.064 
1.278 

L 
2.175 
3.696 
5.630 
8.228 
11.031 
2.612 
4.715 
7.367 
15.799 
20.898 

AH(%) 
2.4 
1.9 
1.3 
2.3 
1.6 
0.3 
2.3 
2.5 
1.9 
2.8 

AL(%) 
2.2 
2.1 

1.0 
0.7 
2.4 
1.2 
0.5 
0.1 
2.6 

1.9 

Table 4-2: Comparison of results of 3-D particle-tracking model in terms of change in the particle 
jump characteristics when complete (Eq. 4-6) and simplified lift (Eq. 4-5) force expressions are used. 

A represent s the percentage of change of the simplified expression relative to the complete 
expression. 

R
p 

73 

250 

T, 

1 
1.5 
2 

2.5 
3 
1 

1.5 
2 

2.5 
3 

Complete Lift 
Exp. 

H 
0.320 
0.498 
0.675 
0.861 
1.026 
0.335 
0.521 
0.691 
0.883 
1.070 

L 
4.136 
6.987 
10.282 
14.167 
17.898 
3.954 
6.667 
9.461 
13.019 
16.714 

Simplified Lift 
Exp. 

H 
0.319 
0.497 
0.675 
0.862 
1.028 
0.335 
0.523 
0.693 
0.888 
1.078 

L 
4.131 
6.983 
10.277 
14.162 
17.895 
3.949 
6.668 
9.466 
13.040 
16.756 

AH(%) 
0.23 
0.10 
0.01 
0.11 
0.19 
0.02 
0.25 
0.42 
0.63 
0.74 

AL(%) 
0.13 
0.06 
0.04 
0.03 
0.02 
0.14 
0.03 
0.05 
0.16 
0.25 
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4.2 Particle Rotation 

Due to the combined effects of bed roughness and velocity gradients, particles 

rotate during the saltation process (Lee and Hsu, 1996). Hui and Hu (1991) conducted 

flume experiments and found the spinning rate to be about 40 revolutions/s in water. The 

particle spin can be decomposed depending on the axis where the particle rotates: screw-

spin (if rotating along the stream-wise axis), top-spin (if rotating along the span-wise 

axis) and side-spin motions (if rotating along the wall-normal axis) respectively. Under 

uniform flow conditions, the saltating process are dominated by top-spin motions. Side-

spin and screw-spin exists only at an early stage of the rising limb process (Lee and Hsu, 

1996). 

Several authors (Yeganeh et al., 2000; Yamamoto et al., 2001; Lukerchenko et al., 

2006; Harada and Gotoh, 2006) have used the following expression to describe the 

rotation of a particle around an / axis. 

dt ' 2 

(d } up 

l2 j 

5 

< < (4-7) 

where cop is the particle rotation vector, cof is the particle rotational velocity relative to 

the fluid vorticity and / is the particle's moment of inertia. Assuming that particles are 

spheres, /can be calculated as2/5m(dp/2f, where m is the particle mass. The right-

hand side of the equation represents the viscous torque against the particle rotation, which 

was theoretically obtained by Dennis et al. (1980) and Takagi (1977). Ct is a non-

dimensional coefficient which is a function of the Reynolds number for the rotational 

4v, given by: motion RQr=dz
p 

— / > 
(Or 
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Ct = - £ L + ̂ - + C3 Rer (4-8) 
1 4^ Rer

 3 " 

where the coefficients C7, C2 and C5 are presented in Table 4-3. 

Table 4-3: Values of coefficient CI, C2 and C3. Computation of C, coefficient. Rer 

Ci 

c2 

c3 

0-1 

0 

50.27 

0 

1-10 

0 

50.27 

0.0418 

10-20 

5.32 

37.2 

5.32 

20-50 

6.44 

32.2 

6.44 

50+ 

6.45 

32.1 

6.45 

Using the particle diameter and the wall-friction velocity as the length and 

velocity scales, respectively, the non-dimensional particle rotation vector m as a 

function of the dimensionless particle rotational velocity relative to the fluid vorticity cor, 

is given by the following vector equation: 

dco _ -16Ct 

dt ~ 15x(R + l) 

In a 2-D case, only the top-spin component (m y )is calculated, from Eq. (4-9). It is 

interesting to note that Nino and Garcia (1998a) employed an empirical equation to 

compute the top-spin component of the rotation vector. 

The algorithm to calculate particle rotation was implemented computationally in 

the same 3-D code used to calculate particle translational velocities. Validation of the 

particle rotation sub-routines is discussed in the next chapter. 

a>r 
(4-9) 
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4.3 Algorithm for Particle-Wall Collisions 

To describe the motion of a saltating particle, it is necessary to incorporate a 

collision algorithm to compute the particle velocity after the rebound event. A complete 

collision model usually can be divided in two sub-models: a) a series of equations 

describing the particle velocity after the rebound and b) a representation of the bed 

roughness. 

4.3.1 Particle Rebound Sub-Models 

Two widely-used sub-models for particle rebound were considered in this study. 

The first model considered is the Garcia and Nino (1992). 2-D model which was based on 

the ideas of Tsujimoto and Nakagawa (1983), considering a saltating particle that 

approaches the bed at an angle 9in and strikes the surface of the bed that faces upstream 

with an angle 9^ (see Section 3.1.2). The model has been used by Nino and Garcia 

(1998a,b), Lee et al. (2000), and Lee et al. (2006) with very good agreement with 

experimental data for natural sediments saltating in a turbulent channel. This model has 

been extended to three dimensions by Lee et al. (2006). A limitation of this model is in 

that it does not describe the change on the particle rotation after the collision with the 

bed. 

The second rebound sub-model, derived originally by Matsumoto (1970b) in 2-D 

and later extended to 3-D by Tsuji et al. (1985), considers the conservation of linear and 

angular momentum before and after the rebound; it also accounts for the particle rotation 

and the possibility of the particle sliding on the bed. Considering that the coefficients of 

restitution and friction are known, particle motions before and after the collision can be 
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estimated by solving three impulsive equations. The post-collision velocities (see Fig. 4-

2), denoted with the superscript A, as a function of the particle velocity immediately 

before the collision, denoted with the superscript ~, are calculated depending on whether 

the particle slides or not on the bed. A particle slides if expression (4-10) below is 

satisfied: 

wr - 2 

U\ 7/(e + l) 
(4-10) 

where \UL is the modulus of the particle velocity vector before the collision with the 

wall. This criterion says that if the particle hits the bed at a shallow angle, the chances of 

sliding are high. If the criterion is met, i.e., if the particle slides, the post-collision 

velocities for the stream-wise, the span-wise and wall-normal directions are calculated as 

follows: 

Q 

Figure 4-2: Parameter definition for a 3-D particle-wall collision. Tsuji et al. (1985) 
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up = (f) 
r 
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V 

2v„ 
tB' x = 

4. ' 
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; vP = 

2 u„ 
XO' y = 

Wp =-e™p 

A 

mz -£&z 

(4-11) 

(4-12) 

where VJX , and ttrz indicate the components of the particle rotation vector along the 

stream-wise, and wall-normal directions, respectively, before the collision. If the particle 

does not slide, i.e., if the criterion in (4-10) is not met, the post-collision velocities are 

calculated as: 

Up=up+ sxf(e + l)wp vp=vp+ syf(e + l)wp wp = -e wp (4-13) 

5 5 
mx=GJx sf(e + \)w my=STy + — sxf(e + i)w mz-mz (4-14) 

d d 
p p 

where the coefficients ex and ey are defined as sx = (w„ + acoyJ/\U\ and 

sy = (v„ -acoxjAu\in . They satisfy the relation sx +S7, =1. Eqs. (4-11) to (4-14) are 

developed for a horizontal contact plane between the flying particle and the bed and their 

derivation is fully described in Crowe et al. (1998). The beauty of this model is that it can 

be easily extended to describe the inter-particle collision, feature that was also added to 

the present 3-D model for multiple moving particles (see Section 4.6). 

Tsuji et al.'s model has been extensively used to describe the transport of particles 

in pneumatic conveying systems (Tsuji et al. 1987; Sommerfeld 1992; Sommerfeld and 

Huber 1999; Kartushinsky and Michaelides 2004) but only once, to the best of our 
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knowledge, to address the motion of natural sediment particles in a turbulent channel 

(Lukerchenko et al. 2006). 

4.3.2 Previous model for the Treatment of the Surface: a Roughness (Bed-

Representation) Model. 

To avoid the attenuation of the vertical velocity after tens of rebounds, the 

irregularity of the collision process must be considered (Gordon et al. 1972, Crowe et al. 

1998). Several authors have incorporated the effect of the bed roughness to the collision 

model thorough an angle between the channel surface and the real point of contact 

between the flying particle and the bed. In those models the wall has been replaced by a 

virtual wall where its inclination has been assumed to be either uniformly distributed in 

the range (-4°, +4°) (Tsuji et al. 1987), or normally distributed between (-4, 4°) 

(Sommerfeld 1992). 

Garcia and Nino (1992) in turn assumed that the bed is formed by uniformly pack 

spheres as shown in the previous chapter. 

4.3.3 A New Bed-Representation Sub-Model 

This study introduces a new 3-D algorithms to represent wall roughness, 

extending the Garcia and Nino (1992) treatment of the bed. The roughness pattern was 

defined as an array of spheres of diameter dp placed one next to the other, as Nino and 

Garcia did (See Fig. 3-1). The point of contact between the flying particle and the bed 

defines an inclination plane, which is now defined by using two angles, <% (Fig. 3-3) and 

cty (Fig. 4-3). The values of <% and a^ can only vary between -30° and 30° (Nino and 
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Garcia 1992), given the configuration of the particles lying in the bed. An auxiliary 

variable r2 is defined as shown in Fig. 4-3. Analogously to the 2-D case, a geometric 

relation between ab, ain and r2 is given by: 

T 1 

-J- = 2 (C0S(^*) " t a n ( a » )sin(<*b)) (4-15) 

With this configuration, we defined three sub-models. Uniformly Distributed 

Angles (UDA) sub-model assumes that both angles Of, and a^ are uniformly distributed 

between -30° and 30° and these angles are determined thought random number 

generators. Independent Bed Angle (IBA) and Dependent Bed Angle (DBA) sub-models 

are based on relations using Eq. (4-15) which define 6^ with rx and 0in and a^ with r2 

Figure 4-3: Three dimensional collision of a particle with the bed. The bed is composed by uniformly 
packed spheres placed one next to the other. The particle diameter dp is equal for the moving and 

the resting spheres. Side view. Definition of ajn and OCb . 

In the IBA sub-model the values of rj/dp and r2 / dp are obtained as a random 

number uniformly distributed between 0 and 0.5, independently of the incidence angles 
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6in and ain, respectively. In the DBA sub-model, the values of rj / dp and r? / dp are 

obtained by reducing this range depending on the particle conditions just before the 

collision, defined as rmin]/dp and rmax]/dp, and rmi^/dp and rmaxji'dp, 

respectively. These ranges are defined as follows: the minimum values (rminj/dp and 

r min2/ dp) are equal to 0 and the maximum values (r maxj/ dp and r max2/ dp) are 

obtained by replacing the incidence angle (9in and ain, respectively) in Eq. (4-15) and 

assuming that the bed contact angle (0^ and a^, respectively) is equal to 30°. Then, the 

values of rj/dp and r2/dp are obtained with Eq. (4-15) and random number 

generators between rmiri]/dp and rmaxj/dp, and rmin2/dp and rmaxj/dp, 

respectively. 

4.4 Assessments of Particle-Wall Collision Models 

Six different cases were investigated. The results of these simulations were 

compared with two experimental data sets for validation of the large-scale characteristics 

of the model: the observations by Nino and Garcia (1998b) for natural sediment particles 

saltating along a horizontal channel, and the experiments by Lee and Hsu (1994). Four 

sets of values for the friction and restitution coefficients were tested, as presented in the 

literature review and summarized in Table 4-4. Set Schmeeckle represents the values 

provided by Schmeeckle et al. (2001); Set Shen includes the values proposed by Shen et 

al. (1989); Set Nino considers the Nino and Garcia's (1994) values, and Set Tsuji 

includes the values proposed by Tsuji et al. (1987). 
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Table 4-4: Set of values of friction and restitution coefficients used in the particle-wall collision model 
comparison. 

Set 

Schmeecklee 
Shen 
Nino 

Tsuji 

Author 

Schmeeckle et al. (2001) 
Shen etal. (1989) 
Nino and Garcia (1994) 

Tsuji etal. (1987) 

Restitution 
coefficient e 

0.65 
0.95 

e = 0.75- 0.25 T./T.C 

0.8 

Friction 
coefficient / 

0.1 
0.3 
0.89 

0.4 

4.4.1 Characteristics of the Numerical Tests 

All four sets were tested for the six simulation runs defined in Table 4-5. 

The numerical models were run for a simulation time long enough to have 

meaningful statistics. In order to remove the effect of the initial conditions, the first 

jumps were not considered in the statistical analysis. 

Table 4-5: Simulation summary. 

Run# 
1 

2 

3 

4 

5 

6 

Flight model 
(Sections 3.2 and 4.1) 

2D Nino and Garcia 
(1994) (Section 3.2) 

3D (Section 4.1) 

3D (Section 4.1) 

3D (Section 4.1) 

3D (Section 4.1) 

3D (Section 4.1) 

Rebound model 
(Section 3.2.2 and 

4.3.1) 

2D Garcia and Nino 
(1992) (Section 3.2.2) 
3D Tsuji etal. (1985) 

(Section 4.3.1) 
3D Tsuji etal. (1985) 

(Section 4.3.1) 
3D Tsuji etal. (1985) 

(Section 4.3.1) 
3D Tsuji etal. (1985) 

(Section 4.3.1) 
3D Tsuji etal. (1985) 

(Section 4.3.1) 

Roughness model 
(Sections 3.2.2, 
4.3.2 and 4.3.3) 
Garcia and Nino 

(1992) 
(Section 3.2.2) 

Tsuji etal. (1987) 
(Section 4.3.2) 

(Sommerfeld 1992). 

UDA sub-model 
(Section 4.3.3) 
IBA sub-model 

B(Section 4.3.3) 
DBA sub-model 
(Section 4.3.3) 

4.4.2 Simulation Results of the Numerical Tests 

Appendix C includes tables with the results of the runs for Rp= 73. Figure 4-4 

present the results for Run 6, Set Tsuji, the one with the best agreement with the data. 
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In an attempt to provide an accessible means for interpretation, Table 4-6 below 

presents the results of the transformation of the statistical data into an overlap area index. 

An area for each of the three parameters is defined by creating regions bounded by using 

the average value of each parameter plus/less standard deviation. These areas are defined 

for both the measured data and the numerically obtained results. The overlap area is 

determined by calculating the percentage of the area of overlap with respect to the area of 

the experimental results. The overlap area index represents the average overlap area 

determined for each of the three parameters. Therefore, the bigger the overlap area index, 

the better the performance of the collision model (See Fig. 4-5 as example). 

a)« 

X 2 I 

o Simulation Rp=73 

AN&G1998Rp=60-90 

2 
X* /T*C 

b) 

30 

J 20 

10 

n 

0 Simulation Rp=73 

AN&G1998Rp=60-90 

1-9—
1 

<• 

- , « » • '• 

& * t J 

2 

C) 10 

4 -

2 -

0 

0 

! % iil 

O Simulation Rp=73 

AN&G1998Rp=60-90 

2 

Figure 4-4: Comparison of simulations with experimental data for the case of a particle moving in a 
flume and rebounding with the wall (Run 6, Set Nino). The figure shows results associated with: a) 
the particle jump height (H), b) the particle jump length (L) and c) the particle stream-wise mean 
velocity. Symbols represent mean values and vertical lines indicate two corresponding standard 

deviations. Rp =73. 



84 

As depicted in Fig. 4-5 and presented in Table 4-6, the results obtained for Run 6 

Set Nino presents a 42.41% of overlap area with respect to the experimental results of 

particle jump height by Nino and Garcia (1998b). 

2 

1.8 

1.6 

1.4 

1.2 

HI 1 

0.8 

0.6 

0.4 

0.2 

0 

Figure 4-5: Overlap Area Determination: Rp = 73, Simulation Run 6. Set Nino. The overlap area is 
defined is depicted as the grey area in the figure. 

Appendix D shows the results obtained for Rp =250 using the different collision 

models. An example of simulation results for Run 5 and Rp = 250, Set Shen is presented 

in Fig. 4-6. Unfortunately, the experimental data by Lee et al. (1994) provide no 

information of the dispersion of them. Therefore, the overlap area index used for Rp =73 

can not be used in this case. A new statistical index the results of the root mean square 

error (RMSE) in introduces. Table 4-7 presents the results RMSE. The experimental 

results obtained by Lee and Hsu (1994) were considered as the observed value. If there is 

no experimental data available for the corresponding value of r», an equivalent 

O Simulation Rp=73 

AN&G1998Rp=60-90 

.*• <> 

t 

- . ^ * / ^ e s u ^ a r e a by 
experimental results 

tesult area by 
simulation results 

Overlap area 
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experimental value is obtained by using a linear fit approximation of the existing 

experimental values. The error index for each simulation/set is defined as the average 

between the values of RMSE observed for the particle jump height, length and mean 

particle velocity. 

Table 4-6: Statistical analysis using the overlap area indices. R„ =73. 

Run 

1 

2 

3 

4 

5 

6 

Overlap Area H (%) 
Overlap Area L (%) 
Overlap Area U (%) 

Overlap Index 
Overlap Area H (%) 
Overlap Area L (%) 
Overlap Area U (%) 

Overlap Index 
Overlap Area H (%) 
Overlap Area L (%) 
Overlap Area U (%) 

Overlap Index 
Overlap Area H (%) 
Overlap Area L (%) 
Overlap Area U (%) 

Overlap Index 
Overlap Area H (%) 
Overlap Area L (%) 
Overlap Area U (%) 

Overlap Index 
Overlap Area H (%) 
Overlap Area L (%) 
Overlap Area U (%) 

Overlap Index 

Schmeeckle 
13.37 
7.82 

22.37 

14.52 
0.00 
0.00 
12.86 

4.29 
0.00 

0.00 
0.00 

0.00 
0.00 
1.70 
0.00 

0.57 
40.63 
51.69 
65.29 

52.54 
55.32 
45.33 
65.31 

55.32 

Shen 
37.18 
44.13 
78.63 

53.31 
0.00 
0.00 
13.96 

4.65 
0.00 
0.00 
0.00 

0.00 
23.45 
43.79 
0.00 

22.41 
67.63 
57.03 
76.11 

66.92 
61.62 
57.50 
87.63 

68.92 

Nino 
39.80 
49.74 
72.40 

53.98 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 

0.00 
12.91 
48.67 
58.37 

39.98 
41.63 
51.30 
59.16 

50.70 
45.56 
55.33 
51.35 

50.75 

Tsuji 
29.54 
42.76 
73.85 

48.72 
0.00 
0.00 
4.57 

1.52 
0.00 
0.00 
0.00 

0.00 
66.17 
76.55 
52.87 

65.20 
71.21 
56.86 
83.33 

70.47 
75.75 
56.96 
82.49 

71.74 
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Figure 4-6: Comparison of simulations with experimental data for the case of a particle moving in a 
flume and rebounding with the wall (Run 6, Set Nino). The figure shows results associated with: a) 
the particle jump height (H), b) the particle jump length (L) and c) the particle stream-wise mean 
velocity. Symbols represent mean values and vertical lines indicate two corresponding standard 

deviations. R „ =250. 

For the Garcia and Nino (1992) particle-wall collision and roughness models 

considered in Run 1 and Rp =73 the best agreement with the experimental results was 

obtained using the Set Nino of friction and restitution coefficients (which are the 

proposed by Nino and Garcia (1994) for this particle size). On average, the results 

obtained for the model have a very good agreement with the average experimental value. 

However they present a slightly smaller standard deviation than the experimental data. In 

spite of the good agreement of this model, we are more inclined to use the post-collision 

model by Tsuji et al. (1985) due to its capability to be extended for inter-particle 

collision, feature that would be addressed in a future work. 
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Table 4-7: Statistical analysis using the root mean squared error (RMSE). Rp =250. 

Run 

1 

2 

3 

4 

5 

6 

RMSE H(%) 

RMSE L(%) 
RMSE U (%) 

Error Index 
RMSE H(%) 
RMSE L(%) 

RMSE U (%) 

Error Index 
RMSE H (%) 
RMSE L(%) 

RMSE U (%) 

Error Index 
RMSE H(%) 
RMSE L (%) 
RMSE U (%) 

Error Index 
RMSE H(%) 
RMSE L(%) 
RMSE U (%) 

Error Index 
RMSE H(%) 
RMSE L(%) 
RMSE U (%) 

Error Index 

Schmeeckle 
21.93 
1.30 
2.44 

8.56 
37.66 
5.00 
1.46 

14.71 
37.68 
5.03 

0.45 

14.38 
25.26 
1.74 
5.78 

10.93 
26.65 
8.90 
6.25 

13.93 
32.83 
9.86 
6.00 

16.23 

Shen 
5.31 
5.28 
4.18 

4.92 
37.31 
4.82 
2.78 

14.97 
37.09 
4.75 
1.17 

14.34 
21.96 
6.99 
11.29 

13.41 
78.99 
17.18 
10.22 

35.46 
59.97 
13.66 
7.72 

27.11 

Nino 
3.55 
4.40 
4.41 

4.12 
37.78 
5.10 
6.00 

16.29 
37.79 
5.11 
4.99 

15.96 
19.84 
2.03 
7.76 

9.88 
44.23 
12.12 
8.19 

21.51 
26.05 
8.88 
4.50 

13.14 

Tsuji 
7.51 
3.82 
3.29 

4.88 
37.61 
4.99 
4.60 

15.73 
37.58 
4.98 

3.05 

15.20 
18.39 
5.83 
10.06 

11.43 
67.37 
15.46 
9.57 

30.80 
47.80 
12.04 
7.20 

22.35 

As said, Tsuji et al.'s (1985) model in Run 2 assumes a normal probability 

distribution of the inclination angle of the bed between -4° and +4° and the roughness 

pattern as defined by Tsuji et al. (1985, 1987), simulation results in Table 4-6 indicate 

that Run 2 does not represent the experimental results. (The overlap areas for jump height 

and length—for all restitution and friction coefficients—are equal to zero). The same 

agreement with data if the narrow range is also observed for Run 3 simulations 

(Sommerfeld (1992) roughness pattern). 
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The new roughness model presented in Run 4 for Rp=73, which basically 

increases the range of the inclination angles with respect to the range proposed by Tsuji 

et al. (1987) and Sommerfeld (1992) generally increases the overlap index. The 

simulation results present a very good agreement with the experimental data with an 

overlap area index ranging from 22% (Set Shen) to 65% (Set Tsuji). However a closer 

look at the results shows that the roughness model used in Run 4 produces both very 

large or extremely small jumps, producing a jump distribution extremely non-uniform 

with a very large standard deviation (See Appendix C). Analyzing this model in detail, 

the assumption that the contact plane is defined with angles varying between 30° and -30° 

is unrealistic. Positive values of <% indicate that the particle hits the upstream face of the 

lying particle, and negative values of 9f, indicate a collision occurring at the downstream 

face of the bed particle. Considering the characteristic of the particle velocity just before 

the collision (positive stream-wise velocity and negative wall-normal velocity), there is a 

bigger probability of hitting the upstream than the downstream side of the roughness (see 

Sommerfeld and Huber 1999). Therefore, by assuming a uniform probability for 9^ (as 

the UDA sub-model does) we are providing the model with particle collision angles with 

no real physical meaning. This causes some of the jumps to have values of length and 

height almost equal to zero, which is unrealistic. 

Simulation results for Runs 5 and 6 produce the strongest agreement with data for 

Rp =73. The results of Table 4-6 suggest that Run 5 improved the prediction made by the 

IBA sub-model , due to the fact that the definition of f] /dp and r2/dp reduce the 

range of variability of the angle 9f,. However, given some incidence angle 9in, there are 
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some values of rl'dp between 0 and 0.5 that are unfeasible. Run 6 considers this 

geometrical constraint and the results obtained produce the best agreement with the 

experimental data available, by using the Set Tsuji of friction and restitution coefficient 

with and average overlap area of 72%. Therefore, the proposed roughness method ( DBA 

sub-model), which assumes uniforms values of f] /dp and r2/dp between a 

maximum and a minimum value is able to reproduce with a high degree of accuracy the 

experimental data provided by Nino and Garcia (1998b). 

For i? =250, the numerical simulations were compared with the experimental 

data provided by Lee and Hsu (1994). In this case, the simulation results with the RMSE 

index are obtained with those Run 1 model, using the restitution and friction coefficient 

given by Nino and Garcia (Set Nino). However, the simulation results for this model and 

the experimental data available presents two different trends, as it was discussed in 

Section 3.3. 

This unrealistic trend shown by the numerical simulation using the two 

dimensional model by Nino and Garcia (1994) is corrected by explicitly estimating the 

particle rotation at every time step using the Eq. (4-8), as done in Run 2 to Run 6. 

Using the RMSE index as the parameter to select the best collision model for 

Rp =250, the results obtained using Run 4 Set Nino provided the best results. However a 

closer look at the results shows that the roughness model used in Run 4 produces both 

very large or extremely small jumps, producing a jump distribution extremely non

uniform with a very large standard deviation (See Appendix D). Therefore, these results 
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are dismissed. Therefore, using the RMSE, the best results for the collision model for 

Rp =250, are obtained by using Run 6 Set Nino. 

Thus, considering the performance of the six models analyzed, for both sets of 

experimental data the simulation results obtained for Run 6 produce the best fit. Thus 

roughness DBA sub-model, provides a good representation of bed load particle motion in 

the range of particles corresponding to sand. The values of the restitution and friction 

coefficients depend on the particle size simulated: for the smaller size, values of 0.8 and 

0.4 (Set Tsuji) respectively are selected, and for the larger size, values of 0.5 and 0.89 

(Set Nino) respectively more accurately represent the particle motion close to the bed. If 

the friction and restitution coefficients represent the amount of energy conserved after the 

collision (as discussed in Section 3.5) and considering that the energy is proportional to 

the mass, it is reasonable to think that the larger the particle the larger the amount of 

energy lost in the collision, and thus, the smaller the value of both coefficients. 

4.4.3 Validation of the Selected Collision Model 

The angular velocity of the particle resulting from the model with the best 

performance (Run 6, Set Tsuji) is compared with the experimental results obtained by 

Nino and Garcia (1998a). The experimental setup by Lee and Hsu (1996) obtained 

valuable information of particle angular velocity for larger particles (^=2126) and it 

was also simulated. Both simulations present a very good agreement with the 

experimental measurements, as depicted in Fig. 4-7. 
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Figure 4-7: Particle angular velocity simulations, a) Nino and Garcia (1998a) for R =73. b) Lee and 
Hsu (1996) for ^=2126. 

To validate the results of the selected collision model, the writer studied the 

characteristics of the collisions (small-scale level of validation). Nino and Garcia (1998a) 

provided experimental information of the take-off angles of the particles of Rp =60 to 90. 

In Fig. 4-8 the experimental data obtained from this study is compared with the simulated 

results for the collision model with the best performance (Run 6, Set Tsuji), with an 

acceptable agreement. 

The model corresponding to Run 6, Set Tsuji, was used to analyze the particle 

lateral dispersion defined as the absolute value of the angle of deviation of the particle in 

the x-y plane. A comparison with observations undertaken by Nino and Garcia 1998a was 

made (See Fig. 4-9). In general terms, good agreement was found between the numerical 

simulation and the experimental results. The bed roughness model selected produced 

slightly bigger lateral dispersion angles than the values found experimentally. The results 

obtained numerically also had a larger deviation from the mean value. 
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Figure 4-8: Take off angle comparison. Simulation and experimental results. Rp =73. Run 6 Set 

Tsuji. 

The average value of the lateral deviation angle (#</) resulting from the 

numerical simulation shows dependency with respect to the flow conditions, contrary to 

experimental results presented by Nino and Garcia (1998a). The authors stated that the 

lateral deviation of particle trajectories may be produced by two different mechanisms: 

the first associated with the initial conditions given by the rebound with the wall and the 

second associated with cross-flow turbulent events. Both processes occur simultaneously 

and cancel each other as flow velocity increases, resulting in a constant lateral deviation. 

In our simulation, as the flow velocity increases, the particle stream-wise velocity 

increases (See Fig. 4-4c and 4-6c) but the span-wise component remains relatively 

constant, decreasing the average lateral deviation angle. There is no other effect (like the 

presence of secondary currents or turbulence effect in this section) that may counteract 

the shear flow effect on the decrease of the deviation angle. 
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Figure 4-9: Comparison of the absolute value of the deviation angle ICC^I obtained in the numerical 
simulation and experimentally by Nino and Garcia (1998a). a) Absolute value of the deviation angle 
ad of particle trajectories as a function of the flow conditions, b) Cumulative probability distribution 

of the absolute value of the deviation angle. 

4.5 Analysis of Particle Velocity Under a Non-Turbulent Velocity Field. 

Using the selected rebound sub-model (Tsuji et al. 1985) and bed roughness sub

model (DBA sub-model) Fig. 4-10 shows the temporal evolution of the particle velocity 

in the stream-wise, span-wise and wall-normal components in a non-turbulent velocity 

field. 

A discontinuity pattern is observed in each of the parameters plotted in Fig. 4-10. 

This characteristic is given by the collision of the particle with the wall, which produces a 

sudden change in the particle trajectory. To understand the change in the velocity 

magnitude over the time it is necessary to understand what how the particle interacts with 

the flow field, and therefore what is the particle position with respect to the wall along 

the time. 

[•N&G1998»Rp=73 
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Figure 4-10: Single particle velocity time series in a velocity field defined by a semi-logarithmic law. 
Rp =73, r» /T*c =2.0. a) stream-wise component, b) span-wise component, c) wall-normal 

component. 

Fig. 4-11 presents a zoom view of the data presented in Fig. 4-10 for one specific 

jump and the particle position with respect to the wall in the same time. As it is expected, 

the wall-normal component of the velocity presents a maximum value just after the 

particle collides with the wall, and it decreases due to the action of the gravity until the 

particle hits the wall again. The particle velocity in the wall normal component is equal to 

zero when the particle reaches its maximum altitude. 
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The span-wise velocity component decreases after each jump due to the friction 

effects given by the drag and Basset forces. The magnitude of this velocity is relatively 

small compared with the other two velocity components. 
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Figure 4-11: Velocity variation over the time for one particle R =73 , r» /T,C =2 with the 

corresponding particle elevation, a) Stream-wise component, b) Span-wise component, c) Wall-
normal component. 

The magnitude of the particle velocity at the stream-wise component is the largest 

of the three components, due to advection by the flow. After colliding with the wall, the 

particle gains enough momentum reach higher elevations where fluid velocity is higher. 
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Therefore, the magnitude of the stream-wise velocity increases until it reaches a 

maximum value, and then it decreases before the particle encounters the wall again. The 

maximum stream-wise velocity is not reached at the particle highest elevation point with 

respect to the wall, but slightly after. In spite of the fluid velocity decreasing below the 

maximum particle height, the inertia of the particle plays a fundamental role in 

maintaining the particle acceleration and allowing the particle velocity to increase for a 

longer period of time. 

Fig. 4-12 shows the results obtained for a particle angular velocity along each axis 

over the time under the velocity field provided by the law of the wall. Two interesting 

features are observed in the plot: first, the decaying nature of the modulus of the angular 

velocity, due to the presence of the rotation drag force that decreases the particle 

acceleration every time step. Second, several peaks are observed in the plot, which 

correspond to the time step where the particle hits the wall (similar to the particle 

translation velocity). At that moment, the wall provides new angular momentum to the 

particle. It is also observed that the magnitude of the angular velocity along the span-wise 

axis (a>y) is significatively larger than the other two components of the angular velocity, 

as it was observed by Lee and Hsu (1996). 
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Figure 4-12: Dimcnsionless particle rotation along the different axis. R =73 , T* /T*c =2. a) Stream-

wise component, b) Span-wise component, c) Wall-normal component. 

Considering all the conclusions obtained in this chapter, the three dimensional 

particle tracking model has been validated and represents a realistic approximation of the 

linear and angular velocities of particles close to a fixed wall. 

4.6 Motion of Multiple Particles 

A more realistic scenario to simulate the bed load transport requires the 

simulation of multiple particles moving at the same time, colliding with the wall and 

among them. The numerical code developed was modified to represent this condition. A 
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simple simulation was run to evaluate its performance. Fig. 4-13 shows the trajectory of 4 

particles of i? =73 and under flow conditions given byr. /r»e=1.5, without considering 

particle-particle collision. At first glance the trajectory of each particle seems realistic, 

compared with the trajectory observed for natural sediments along a channel. The 

dispersion of the particles in the span-wise component is small and is basically given by 

the rebound of the particle at the wall. 

Figure 4-13: Three dimensional particle trajectory. No particle-particle collision R =73 , r . / T*c =1.5. 

4.7 Inter-Particle Collision Model 

The next step requires adding an inter-particle collision algorithm to the 

numerical code. In order to simplify the computation of particle-particle collisions, only 
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binary collisions are taken into account. This assumption is valid only when the particle 

concentration is sufficiently low (less than 1%, Crowe et al 1998). 

Post collision velocities for particles / and j (denoted with the superscript A) are 

calculated using the following expressions based on the particle velocities just before the 

collision (denoted with the superscript ~), presented by Crowe et al (1989) and 

Yamamoto et al (2001), based on the same assumptions as the conservation of 

momentum of Tsuji et al (1985) model. 

uPi =upi +J uPj -upj -J (4-16) 

at =(5i +5nxJ cbj =5jj +5nxJ (4-17) 

where J is the impulsive force exerted on particle / and n is the normal unit vector 

directed from the center of the particle i to the contact point with the particle j (Fig. 4-

14). Assuming spherical particles, known values of the restitution (e) and friction 

coefficient ( / ) , J can be calculated from (Tanaka and Tsuji (1991)): 

J = J„n + J,t (4-18) 

J„=(l + e)c>n (4-19) 

1 
J, = min •fJ*>7 

Cfc (4-20) 
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Figure 4-14: Inter-particle collision sketch. Definition of parameters. 

In the above equations, t is the tangential unit vector in the direction of the slip 

. c is the relative velocity of the 

mass center c = u}• - ut and c/c is the slip velocity between particle surfaces, defined as: 

Cfc=c-\c-np — 5)ixn—5)jxn (4-21) 

The particle-particle collision model was implemented in the computational code 

previously tested. When the distance between the centers of the two particles is less than 

one diameter length, a particle-particle collision occurs. When the center of the particle is 

one-half a diameter above the wall, a wall-collision occurs. An example of the result 

obtained is presented in Fig. 4-15, where the trajectory of the center of two particles of 

diameter dp Particle 1 and Particle 2 are shown. The plot shows the change in the 

trajectory of both particles after hitting the wall (indicated with a filled arrow) and after 

colliding one against each other (blank arrow). Particle 2 hits the wall, come up, and 

collide with particle 1 above three times. The same results were animated using video 

tools (http://mpfg.engr.ucdavis.edu/Student/Andrea/two_phase.html) and the trajectories 

of both particles seem realistic. A snapshot of this video is shown in Fig. 4-16. 

velocity of the particle j to /, given by t = c/c Cfc 

http://mpfg.engr.ucdavis.edu/Student/Andrea/two_phase.html
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In the case of inter-particle collision, which lies in the small-scale level of 

validation, the verification of the algorithm is more complicated. Data for the small-scale 

level are generally scarce compared with the large-scale level, due to the difficulty of 

obtaining them (Heald et al. 2004). To the best of the writers knowledge, there are no 

experimental/numerical data available to validate the change of velocity of a particle 

moving in bed load after a collision. 
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Figure 4-15: Particle 1 (dark line) and Particle 2 (light line) trajectories. Both lines represent the 
position of the center of each sphere. Blank arrows represent the dimensionless time where the both 

particles collide. Filled arrows represent the dimensionless time where Particle 2 hits the wall. 
R =73, r. =0.048. 
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Figure 4-16: Snapshot of particles trajectories, showing a inter-particle collision at time t=0.888. 



103 

CHAPTER 5 

PARTICLE MOTION UNDER A THREE-DIMENSIONAL 

TURBULENT VELOCITY FIELD 

5.1 General Considerations 

In Chapter 4, a new 3-D particle-tracking model including a new representation of 

the bed roughness was developed and validated. The numerical code was extended to 

address the multiple-particle problem for which an inter-particle collision algorithm was 

incorporated. 

Up to this point, the velocity field has been represented using a semi-logarithmic 

expression; this velocity distribution is a very good approximation of the average flow 

conditions in boundary layer flows, but does not include turbulent fluctuations. The 

interaction of sediments with turbulence produce sedimentary structures such as bed load 

sheets (Schmeeckle and Nelson, 2003). To improve predictions of bed load transport, it is 

necessary to provide a more realistic velocity field capable of reproducing the turbulent 

characteristics of natural flows. 

In this chapter, the results of a highly-resolved 3-D turbulent velocity field 

(HR3D) provided by Calo (2004) is coupled with the 3-D code developed in the previous 

chapters. By using this velocity field, the effect of turbulence on the particle motion close 

to the bed is studied in this chapter. One-way coupling between the moving particles and 

the flow field is assumed. 
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5.2 High-Resolution Three-Dimensional Velocity Field (HR3D). Simulation 

Description. 

The simulation provided by Calo (2004) reproduces the ERCOFTAC T3A test 

case (Roach and Brierley, 1992) which involves a by-pass transition to turbulence on a 

flat plate due to free-stream turbulence passing above the plate (Fig. 5-1). The velocity 

field used in this work considers only a sub-section of the simulation, where the 

turbulence has already developed for some distance. 

Laminar Transition Turbulent 

Figure 5-1: Computed stream-wise velocity component in the simulation domain. The extensions of 
the different zones are only approximate. 

The HR3D simulation considers a total of 2048, 180 and 192 nodes in the stream-

wise, wall-normal and span-wise directions, respectively. All lengths are made non-

dimensional using the boundary layer thickness S0 at the inlet of the domain. The 

domain box is 620 S0, 40 S0 and 30 S0 in the longitudinal, vertical and transverse 

directions, respectively. The velocity scale selected was Um, which represents the 

unperturbed stream-wise velocity of the fluid far away from the wall. 
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The grid points in the wall-normal direction are clustered close to the wall 

through a hyperbolic tangent stretching. The ratio between the largest and the smallest 

grid spacing is 60. 

The boundary conditions are similar to those used by Jacobs and Durbin (2001). 

In the span-wise direction, periodic boundary conditions are applied to both velocity and 

pressure. For the pressure, a zero normal gradient is prescribed at the inflow and outflow 

boundaries, and at the wall a no-slip condition is enforced. At the top boundary, a Blasius 

outflow condition is applied to the wall-normal velocity component. The turbulent inflow 

was obtained using Rogallo's (1981) synthetic isotropic turbulence generation procedure. 

The HR3D velocity field was obtained with in a second order, finite-volume code 

developed by Pierce and Moin (2001) and Jacobs and Durbin (2001) at the Center for 

Turbulence Research, Stanford University. In the code, the Navier-Stokes equations are 

solved on a staggered grid. All fluxes in the wall-normal direction are integrated 

implicitly using a Crank-Nicholson scheme (convective terms are linearized). The 

pressure is integrated fully implicitly. No closure for turbulence was used, which could 

converge to Direct Numerical Simulation (DNS) with appropriate spatial mesh sizes. 

(For the spatial steps used in Calo's simulation , the HR3D is close to be DNS but it can 

not be rigorously considered DNS). 

The HR3D simulation used in this chapter considers a value of the Reynolds 

number, defined as Res =UmS0/v, equal to 795. Given the inherent differences 

between the boundary layer in a flat plate and in an open-channel flow, it is necessary to 

discuss in detail the meaning of the coupling of the particle tracking code with the HR3D 

turbulent velocity field. 
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5.2.1 Boundary-Layer Flows in a Flat Plate and in Channels 

It is generally accepted that a high degree of similarity exists between boundary 

layer flows over flat plates (as the one describe above) and channel flows (especially 

open-channel flows, which are the interest of this work, see Gad-El-Hak, 2000). 

Obviously, the most important difference is the spatially developing character of the 

former. In order to assess the feasibility of using Calo's velocity field as a surrogate of 

the velocity field in a channel, the features of both types of flows are discussed below. A 

short but very useful study of similarities and differences between turbulent boundary-

layer, flat-plate flows, and channel flows is presented by Nieuwstadt and Bradshaw 

(1997) and Ashrafian (2004). The main differences and similarities are as follows: 

1) The turbulent/non-turbulent interface, an important feature of the boundary-

layer, flat-plate flows, is absent in channel flows. 

2) The free surface (present only in open-channel flows) suppresses the vertical 

movement of eddies, as opposed to the outer layer of a flat-plate. (Nezu and Nakagawa, 

1993). Experiments have shown that the turbulence intensity in the wall-normal direction 

decreases rapidly very close to the free surface (z / Hc > 0.9, where Hc represents the 

open-channel depth). 

3) In channel flows, excess energy is transported by turbulent diffusion to the 

free-surface region where it compensates the dissipation (Nezu and Nakagawa, 1993), 

whereas in boundary-layer flows, the extra energy is used to sustain the thickening of the 

layer (Jimenez, 2004). 
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4) The wake strength for channel flows is much smaller than the counterpart in 

boundary-layer flows, due to the higher intermittency of turbulence in the outer region 

(Johnson, 1998). 

Despite all the differences previously listed between boundary-layer flows over a 

flat plate and open-channel flows, the logarithmic profile which describes the mean 

stream-wise velocity is applicable to all wall-bounded flows (Gad-El-Hak, 2000). Wei et 

al. (2005) present "compelling evidence" of the logarithmic character of the mean 

profile in a large section of both channel and boundary-layer, flat-plate flows. Therefore, 

the use of the turbulent velocity field calculated in the HR3D simulation is capable of 

reproducing the mean velocity characteristics of an open-channel flow. Further, because 

saltating motion occurs close to the bed (z/depth<0.05) the use of the HR3D velocity 

field yields accurate results. In order to verify whether the turbulence parameters defined 

for an open-channel flow are well reproduced in the HR3D simulation, it is necessary 

first to analyze both flows through a dynamic similarity analysis. 

5.2.2 Dynamic Similarity 

Two problems are dynamically similar if the variables of one problem can be 

related to the variables in the other. The simplest type of similarity occurs when two 

situations have different dimensional variables but the same non-dimensional variables 

(Panton, 2000). In numerical simulations, two problems that are dynamically similar will 

share the same non-dimensional solution. 
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Consider an incompressible flow in which both viscous and gravity effects are 

important (Kundu and Cohen, 2004). The governing equation for the conservation of 

momentum is: 

A— + v -Vv \ = -Vp-g + juW2v (5-1) 

\dt J 

The equations can be made dimensionless by defining a characteristic length scale 

/ and a characteristic velocity scale u. Eq. (5-1) is expressed in dimensionless terms as: 
1 1 

rdvf ^ 
— - + vf • Vvf dt 

= -Vp *— + —V2vf (5-2) 
y Fr1 Re f 

14 

where vf is the dimensionless fluid velocity vector, Fr = - = is the Froude number and 

Re = —— is the Reynolds number. 
M 

In order to use the HR3D simulation for a boundary-layer flow as the velocity 

field for saltating particles in open channels, it is necessary to check if the conditions for 

dynamic similarity are met. To achieve dynamic similarity between two flows, both Fr 

and Re have to be equal (when both viscous and gravitational effects are important). For 

a flow past an object in a homogeneous fluid (such as particles saltating at the bottom of 

a channel), gravity is only important if surface waves are generated (Kundu and Cohen, 

2004). In boundary-layer flows, the Reynolds number is the only dimensionless number 

that needs to be equal in the two flows. Thus, the HR3D velocity field represents 

accurately the flow field interacting with salting particles, provided that the same 

Reynolds number is preserved. 
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The HR3D simulation of a flow on a flat plate has been compared with the 

experimental data obtained from a wind-tunnel experiment (Roach and Brierly, 1992); on 

the other hand, the focus of this thesis is on the flow of water in a open-channel. 

Comparing experimental data and numerical simulation results with two different fluids 

is customary. Rouse et al. (1958) used this procedure to study hydraulic jumps in water 

using wind-tunnel results, stating that as long the mean flow patterns are geometrically 

similar and the changes in energy are comparable, then it is not only the geometrical 

similarity, but also the dynamic similarity is imposed. The following section is devoted to 

corroborate these assumptions. 

5.2.3 Simulated Flow Characteristics 

Time-averaged velocities obtained from the HR3D simulation should be close to 

the analytical expressions for the mean velocity in a turbulent open channel, (i.e. the law 

of the wall). To check this, it is necessary to relate the velocity and time scales used in the 

HR3D simulation. The particle model considers the wall-friction (shear) velocity u* and 

the particle diameter (dp) , as the velocity and length scales, with those of the law of the 

wall, Um and S0, employed in the HR3D simulation. Using the time-averaged values of 

the simulated velocity field (expressed in dimensionless terms as uf /Um ), a relationship 

between velocity scales is found: 

From Eq. (5-3), uf /u, can be obtained for comparison with the law of the wall. 

Defining A - ut jUm , the length scales can be related as follows: 
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= z =—Rex A (5-4) 

where the location of the nodes in the HR3D simulations are expressed in terms of z/S0 . 

From Eqs. (5-3) and (5-4), the values are uf/Um , z/S0 and Res are known from the 

HR3D velocity field. The value of A was determined by adopting the value that produces 

the best fit between the HR3D numerical results and the semi-logarithmic expression for 

the velocity profile in the case of a smooth channel. The value of A was determined to be 

equal to 0.045, as shown in Fig. 5.2. 
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Figure 5-2: Comparison between the mean stream-wise fluid velocity obtained from the HR3D 
simulation and known expressions for the velocity profile in a turbulent open-channel. Solid lines 
represent analytical expressions, circles represent data obtained from numerical simulation data. 

Because the Reynolds number must be preserved between the open-channel flow 

and the HR3D flow, another relationship between non-dimensional numbers can be 

developed: 



I l l 

R p UJo Um S0 u.dp _ r-l S0 

A d„ v u* dp v 
(5-5) 

It becomes clear from Eq. (5-5), that S01 dp can be obtained for a given particle 

size and flow condition (u,). 

Nezu and Nakagawa (1993) presented results of extensive experimental research 

on turbulent open-channel flows. They obtained universal expressions for turbulence 

intensities, denoted uf\ vf', and wf' which represent the stream-wise, span-wise and 

wall normal components of the fluid turbulence intensity, respectively (defined as 

uf'=Juj >v/=vvf > andwf'=Jwj , where uf
f, uf

f, uj are the turbulent 

fluctuations of the fluid velocity in the stream-wise, span-wise and wall-normal 

directions, respectively) and turbulent kinetic energy (TKEf), normalized with the 

friction velocity and the friction velocity squared, respectively. The relations are: 

uf 

-L- = 2.3 exp u. 
= 1.27 exp 

( _ z ^ w, 

u„ 
= 1.63 exp 

TKEt 

ut 

4.78 exp 
/ o A 

2 z 
V HcJ 

(5-6) 

In the case of a boundary-layer flow over a flat-plate, there is no clear definition 

for Hc. In order to compare the numerical results of turbulence intensities and turbulent 

kinetic energy between the flat-plate and boundary layer flows, Hc was assumed to be 

equal to the depth of the simulation space. 



112 

Distributions for the flow turbulence intensity of the flow in each direction and 

for the turbulent kinetic energy (TKEf) computed from the HR3D simulation are 

compared with the experimental regressions developed by Nezu and Nakagawa in Fig. 

5.3. In general, good agreement is noticed between the different vertical profiles obtained 

from the numerical simulation and the empirical expressions. 
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Figure 5-3: Turbulence intensities and turbulent kinetic energy from the numerical simulation 
(circles) compared with the experimental regressions suggested by Nezu and Nakagawa (1993) (solid 
line), a) Stream-wise component, b) Span-wise component c) Wall-normal component d) Turbulent 

kinetic energy of the flow. 
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Results from the HR3D simulation present the expected exponential decrease with 

the distance from the wall, in all four variables. 

The turbulence intensities in the span-wise and wall-normal directions showed a 

better agreement with the regressions than those in the stream-wise direction. This effect 

is produced by the arbitrary definition of Hc. By changing the value of the open-channel 

depth, the values of the turbulence intensity in the stream-wise direction can be better 

adjusted to the corresponding empirical expressions. 
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Figure 5-4: Wave-number spectrum of the velocity component at the turbulent region, a) stream-
wise, b) wall normal and c) span-wise direction. 
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Finally it is necessary to corroborate that the wave-number spectrum obtained 

from the simulation follows the -5/3 Kolmogorov law in the inertial sub-range. Fig. 5-4 

shows that for every velocity component this law is valid. 

It is concluded that the HR3D velocity field represents satisfactorily the flow in 

an open channel. Thus, the HR3D was used to track particles moving close to the bed in 

the following sections. It is assumed that the effect of the particle volume on the 

surrounding fluid is negligible. 

5.3 Three-Dimensional Simulation of the Motion of a Single Particle Under a 

Simulated Velocity Field. 

The 3-D particle tracking model presented in Chapter 4 was coupled with the 

information provided by the HR3D velocity field. In this case, the motion of the particles 

was computed using Eq. (4-4), where the expression for the forces considered the 

fluctuating and non-uniform nature of the 3-D velocity field. 

Collision DBA sub-model (Section 4.4.1) was used, and the best-fit values for the 

friction and restitution coefficients for each particle size were considered in the 

simulations presented below. 

5.3.1 Validation of the Model for a Single Particle 

Validation of the one-way coupling model for a single particle is presented in this 

section. Simulations of the experimental conditions presented by Nino and Garcia 

(1998a,b) and Lee and Hsu (1994) were performed. The numerical model was run for a 



115 

simulation time long enough to have meaningful statistics. In order to remove the effect 

of the initial conditions, the first jumps were not considered in the statistical analysis. 

The collision algorithm was modified to be consistent with the smooth condition 

of the bed in the HR3D simulation. In Chapter 4, the moving particle and the particles 

that composed the bed had the same size. Thus, the values of r maxj/ dp and rmax2/dp 

were obtained by replacing the incidence angle (9in and ain, respectively) in Eq. (4-14) 

and assuming that the bed contact angle (9^ and a^,, respectively) were equal to 6crit = 

30°, defining 6crU as the maximum angle where the moving particle can hit the bed. 

In this chapter the diameter of the particles in the bed (dpbed) is 0.3 mm to 

maintain the smooth bed characteristic of the bed. Therefore, the value of 6cHt changes. 

Using geometrical properties between the moving particle and the particles composing 

the bed, Gcrit is obtained from the following expression: 

6crtt = arcsin 
dpbed 

d u J + d 
\ P bed P J 

(5-7) 

Figs. 5-5 and 5-6 present the numerical results obtained for a particle of R =73 

and R =250 respectively. The figures depict the dimensionless particle jump height and 

length, the mean stream-wise velocity and the mean particle spinning, which are 

compared with the experimental data available. For both particle sizes selected, good 

agreement was found between the numerical simulation and the experimental data. A 

slight over prediction of the particle jump length, height and mean stream-wise velocity is 

observed, and it could be related to the absence of particle-particle collision, feature that 

is always present in nature/experiments and it is not modeled in this simulation. 
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Figure 5-5: Comparison of simulations with experimental data for the case of a particle moving in a 
flume and rebounding with the wall. The figure shows results associated with: a) the particle jump 
height (//). b) the particle jump length (L). c) the particle stream-wise mean velocity, d) the mean 
particle spinning. Symbols represent mean values and vertical lines indicate two corresponding 

standard deviations. Single-particle simulation R „ =73. 

Results obtained with the HR3D velocity field show a slight increase in the 

dimensionless particle jump length, height and velocity in the case of i?r,=73 with 

respect to the values obtained in a non-turbulent velocity field (see Fig. 4-4). On the other 

hand, particle rotation is slightly smaller than the values obtained in the non-turbulent 

case (see Fig. 4-7). 

For a larger particle (Rp =250) the results obtained with the HR3D velocity field 

show a better agreement with the experimental data as compared with the non-turbulent 

case (see Fig. 4-6). In this case, particle jumps are smaller in length and height and the 

particle velocity is slightly smaller than the case presented in Chapter 4. This can be 
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explained by the reduction of the physically possible angles under which the particle hits 

the bed. In this case the difference between the diameter of moving particles and the 

particles composing the bed is larger, and therefore the range of variation of the collision 

angles is smaller. 

a) 

6 

a 4 

-

0 Simulation Rp=250 

AL&H1994Rp=200-300 

< ' A 

1—
—

s 
1 • 

A ]_ 

b) so 

40 

30 

20 

10 

0 

-

o Simulation Rp=250 

AL&H1994Rp=200-300 

< 
" A 

' 

1 
9 

1 

1 
9 

1 

2 3 
T*/T*C 

C) 20 

16 

& 
8 

4 

0 

5 2 3 
T*/ t*C 

0 Simulation Rp=250 

- AL&H1994Rp=200-300 

< 

A 

• • • 
A 

<> 
<• 

" A * * 

2 3 
"C./T.C 

Figure 5-6: Comparison of simulations with experimental data for the case of a particle moving in a 
flume and rebounding with the wall. The figure shows results associated with: a) the particle jump 
height (//), b) the particle jump length (L) and c) the particle stream-wise mean velocity. Symbols 
represent mean values and vertical lines indicate two corresponding standard deviations. Single 

particle simulation R„ =250. 

It is also observed that the standard deviation for both particle sizes is larger than 

in the non-turbulent case, precisely due to the flow fluctuations. Differences between the 

non-turbulent and turbulent simulations show the importance of the temporal and spatial 

variation of the velocity field. 
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The height of the jumps for a particle of i?p=73 varies between 0.5 to 2 particle 

diameters, which indicates that the particle moves in a zone equivalent to 15 to 50 wall 

units from the bed. For particles of Rp=250, the particle moves mainly in a zone defined 

between 100 to 300 wall units from the bed (defined by using vlu* as a length scale). 
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Figure 5-7: Comparison of simulations with experimental data for the case of multiple particles 
moving in a flume, rebounding with the wall and colliding among themselves. The figure shows 
results associated with: a) the take-off angle after a collision (9o u t), b) the absolute value of the 

lateral dispersion angle (OCd) and c) the cumulative probability distribution of the absolute value of 
the deviation angle. Symbols represent mean values and vertical lines indicate two corresponding 

standard deviations. Rp =80. 

Further validation was obtained comparing numerical simulation with the 

experimental data provided by Nino and Garcia (1998a). Those data contain detailed 

information regarding the characteristics of the collision in terms of take-off angles and 
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lateral dispersion. Fig. 5-7 presents the comparison between the numerical and 

experimental results, showing a good agreement in each of the parameters of study. 

Comparing similar results obtained for the non-turbulent case, these results show larger 

scatter for all variables. 

5.3.2 A New Turbulence Filter 

Fig. 5-8 shows the time series of a particle velocity in each direction. It can be 

seen that a random pattern is superimposed to the "mean" particle velocity in the stream-

wise and wall-normal direction. The "mean" particle velocities describe a quasi-periodic 

behavior. 

12 17 

12 17 

12 17 

Figure 5-8: Single particle velocity time series using a high resolution three dimensional velocity 

field. p =73, X, jxtc =1.5. a) stream-wise component, b) span-wise component, c) wall-normal 

component. 
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The previous facts indicate that using a standard temporal average of the particle 

velocity (which has been generally used in the case of particles moving in an unbounded 

flow, see Sommerfeld (2003) and Sommerfeld and Kussin (2003)) is not adequate in this 

case. For instance, when averaging on the time the wall-normal component of the particle 

velocity, the mean value is close to zero (because the value of the wall-normal velocity is 

positive when the particle is going up, and negative when the particle is going down). 

Therefore, the particle turbulence intensity in this direction would be calculated as the 

actual velocity value, instead of considering only the fluctuations due to the flow 

turbulence. Thus, it is necessary to design a new filter 

The new filter needs to be capable of separating the turbulence effect from the 

mean particle velocity conditions, considering both the non-stationary characteristic of 

the particle velocity and the existence of the particle-wall collision event. 
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Figure 5-9: Single particle velocity and the new turbulence filter proposed. R =73, T, /r*c =1.5. 
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In Figs. 4-10 and Fig. 5-8 c) it is observed that every time the particle collides 

with the wall, each velocity component describe a "jump-like" pattern, which in principle 

can be numerically modeled using a second order polynomial. Depending on the time 

duration of the jump, different coefficients of the second order polynomial function of the 

time define the best fit for the particle velocity along an individual jump. Therefore, by 

using a specific second order polynomial that depends only on the jump duration a filter 

is defined to separate the influence of the flow turbulence on the particle velocity. 

The value of the coefficients of the second order polynomial are defined through 

the least squares fit. 

In between two consecutive collisions of the particle with the bed, it is possible to 

define the particle velocity fluctuation at each time step as the difference between the 

instantaneous particle velocity and the value of the filter at that time. Fig. 5-9 shows the 

definition of the filter for the stream-wise component of the velocity. It is worth noticing 

that after the particle the particle hits the wall, the proposed filter does not accurately 

reproduce the mean particle velocity after the collision, where the particle acceleration is 

the highest (see Fig. 5-9). It will produce a peak in the values of the particle turbulence 

intensity close to the bed that needs to be disregarded from the analysis. 

5.3.3 Particle Turbulence intensity and Turbulent Kinetic Energy Computations 

Analogously to the turbulence intensity defined for a turbulent flow, the particle 

turbulence intensity u'p in the stream-wise direction can be defined as: 
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where up is the instantaneous particle velocity, Ufilter represents the value of the 

turbulence filter at the same time and the over bar is the ensemble average over the 

jumps. The same definition is applicable for the transverse (v' ) and wall-normal (w'p) 

turbulent intensities. The particle turbulent kinetic energy (TKEp) is then defined as: 

7 X £ , = | ( « , P 2 + V , P 2 + < ) (5-9) 

Assuming that the greatest variation of the parameter of study is in the wall-

normal direction, Fig. 5-10 presents the ensemble average over the jumps of particle 

turbulence intensity and turbulent kinetic energy at different distances from the wall. The 

plot on the left shows the values of the particle turbulence intensity in each direction and 

the turbulent kinetic energy of the particle as a function of the particle position in the 

vertical. The plot on the right shows the variation of the particle turbulent kinetic energy 

as a function of the flow shear stress. 
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Figure 5-10: Distribution of the particle turbulence intensity and particle turbulent kinetic energy for 
a single particle moving in a simulated velocity field. Rp =120. a) Wall-normal variation of the 
parameters for r , / r , c =1.5. b) Variation of the turbulent kinetic energy as the flow condition 

changes. 
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It is observed that a particle saltating close to the bottom has a maximum value of 

the particle turbulence intensity and turbulent kinetic energy at a distance of 

approximately two particle diameters from the bottom. Fig.5.10a shows that the particle 

turbulence intensity is larger for the wall-normal and stream-wise components as 

compared with that in the span-wise direction. 

Increasing the flow shear velocity (Fig.5-10b), increases the particle turbulent 

kinetic energy and the zone of influence of the TKE. As the flow velocity increases, the 

filter produces a new peak value close to the bottom of the bead. This new peak has a 

mathematical explanation, rather than a physical one, and it is disregarded in the 

remaining analysis (as explain above). 

5.4 Three-Dimensional Tracking of Multiple Particles Under Simulated 

Turbulent Velocity Field 

The next step was to study a more realistic scenario, where multiple particles of 

the same size move close to the bottom of a channel. The effects of collision between 

moving particles may or may not considered in this section. 

5.4.1 Validation of the Model for Multiple Particles 

A series of simulations for two different particle sizes with R „=80 and 120 

(equivalent to 0.7 mm and 1 mm, respectively) under different flow conditions (shear 

velocity ranging from 0.023 to 0.0417 m/s ) were undertaken to evaluate the influence on 

the flow velocity and the particle size in the TKEp (see below). The results of this 

simulation are also used to validate the model, by comparing them with the experimental 
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data presented by Nino and Garcia (1998b) for particles of Rp=73. The computations 

consider a constant particle concentration (0.1%) and binary collisions between particles. 

The results are presented in terms of ensemble averages over all moving particles. 
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Figure 5-11: Comparison of simulations with experimental data for the case of multiple particles 
moving in a flume, rebounding with the wall and colliding among them. The figure shows results 
associated with: a) the particle jump height (//), b) the particle jump length (JL) and c) the particle 

stream-wise mean velocity. Symbols represent mean values and vertical lines indicate two 
corresponding standard deviations. Rp =80 and Rp =120. 

Fig. 5-11 shows a very good agreement of the average value of particle jump 

height and length, as well as the mean stream-wise component of the particle velocity. 

The mean values of L and up obtained for the larger particle (^=120) are slightly 

smaller that the mean values obtained for the smaller particle (R =80). As compared 

with Fig. 5-6, these results show that the inclusion of inter-particle collision in the model 
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produces better predictions in terms or particle jump length, height and mean stream-wise 

particle velocity. 

When considering multiple particles, it is possible to calculate the bed load rate 

and to compare the results with widely used expressions of bed load transport (Mien, 

1998). The volumetric sediment transport rate q is calculated directly by counting the 

number of particles that move through a specific location of the simulated channel, in a 

given period, and multiplying this result by the particle volume. The dimensionless 

volumetric bed load rate q * is then calculated as q* = 
JgRd 

Fig. 5-12 presents the 

comparison of results obtained with the model and known expressions of bed load 

transport. Good agreement between the model and the analytical expressions is found. 
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Figure 5-12: Simulated dimensionless bed load transport rates. Comparison with formulae by 
Meyer-Peter and Muller (1948), Engelund and Fresoe (1976), Fernandez Luque and van Beek (1976) 

and Parker (1978). 

The validation of the model considers both the wall-collision and the inter-

particle collision algorithms. In the case of the collision with the bed, the results obtained 
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of the simulation for multiple particles with Rp-80 were compared with the experimental 

data provided by Nino and Garcia (1998a), as presented in Fig. 5-13. The take-off and 

lateral dispersion angles are slightly larger that the ones obtained experimentally, but are 

within the range of the experimental errors. Overall, the simulations provide expected 

results. 
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Figure 5-13: Comparison of simulations with experimental data for the case of multiple particles 
moving in a flume, rebounding with the wall and colliding among themselves. The figure shows 

results associated with: a) the take-off angle after a collision (&oul), b) absolute value of the lateral 

dispersion angle ( OCd) and c) cumulative probability distribution of the absolute value of the 

deviation angle. Symbols represent mean values and vertical lines indicate two corresponding 
standard deviations. Rp =80. 
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Fig. 5-14 presents the change in velocity when a moving particle collides with 

another moving particle. The collision event is highlighted with a dotted circle denoting 

how each component of the particle velocity changes after the event. To the best of the 

writer's knowledge, there are no experimental/numerical data available to validate the 

change of velocity of a particle moving in bed load after a collision. 

a) 

Figure 5-14: Time series of the velocity components of a single moving particle using a high 
resolution three dimensional velocity field, when multiple particles are simulates, t* shows the time 

when a collision with other particle occurs. R =73, T» [r,c =1.5. a) Stream-wise component, b) Span-
wise component, c) Wall-normal component. 
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Visual observations of animations of the particle trajectories were used in this 

section to check the plausibility of the particle motion (see videos at 

http://mpfg.engr.ucdavis.edu/Student/Andrea/two_phase.html) and a realistic bed load 

motion was observed in those videos. 

The frequency of inter-particle collisions is another parameter we can use to 

check the correctness of the model, and it is presented in Tables 5-1 and 5-2. As the flow 

velocity increases (Table 5-1), the number of collisions per particle decreases as a result 

of particles moving higher and therefore in a larger zone, thus decreasing the probability 

of encountering another particle (assuming the volume concentration is constant). An 

increase of concentration (Table 5-2) under the same flow conditions, produces an 

increase in the number of inter-particle collisions. In this case, a larger amount of 

particles moving in the same zone increases the probability of encounters with other 

particles. 

Table 5-1: Frequency of inter-particle collisions. R =120, C=0.1%. 

T, jTtc 

Number of inter-particle collisions per particle 

Frequency of inter-particle collision 

1 

6123 

20.4 

1.5 

1487 

4.9 

2 

1115 

3.7 

2.5 

1125 

3.8 

3 

1129 

3.8 

Table 5-2: Frequency of inter-particle collisions. R =120, T, /r,c =2.5. 

Concentration 

Number of inter-particle collisions per particle 

Frequency of inter-particle collision 

0.05% 

509 

2.5 

0.1% 

1275 

4.3 

0.2% 

1870 

9.4 

0.3% 

3113 

13.0 

http://mpfg.engr.ucdavis.edu/Student/Andrea/two_phase.html
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5.4.2 Effect of Inter-Particle Collisions on the Particle Turbulence Intensity and 

Kinetic Energy 

The effect of inter-particle collision on the particle turbulence intensity and 

kinetic energy is studied using two numerical simulations, with and without particle 

collisions. 

An equal number of particles where considered in both simulations, equivalent to 

a volume concentration of 0.05%, with a equivalent size of Rp=T$ and a flow rate 

equivalent to r, /T,C =1.5. The simulations were run for a sufficiently long period of time, 

and the initial jumps were not considered in the statistical analysis. 

The particle intensity in each direction and the particle turbulent kinetic energy 

were calculated for both cases, and the results are presented in Fig. 5-15. As expected, the 

particle turbulence intensity and turbulent kinetic energy are slightly larger in the case in 

which inter-particle collisions are included, indicating that collisions between particles 

provide a new source of energy and momentum independent of the particle-turbulence 

interactions. In spite of the difference in magnitude of the particle turbulence intensity in 

each component, the maximum value is located roughly in the same position for both 

simulations (approximately at two particle diameters from the bed), which lies slightly 

below the maximum value for the flow turbulence intensity. 
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Figure 5-15: Multiple particle simulation with no inter-particle collision. Comparison between flow 
and particle turbulence intensity and turbulent kinetic energy and their variation in the vertical. 

R =73, T, /T*C =1.5. a) No inter-particle collision, b) Including inter-particle collision. 

5.4.3 Effect of Particle Size and Flow Velocity on the Particle Turbulence intensity 

and Kinetic Energy 

Simulations for two different particle sizes (i? =80 and 120) under different flow 

conditions (T*/T*C =1 to 3) were run to evaluate the effect of the flow velocity and the 

particle size in the TKEp. The results are presented in Fig. 5-16 and 5-17. 

In both figures, the vertical profile of the particle turbulence intensity and 

turbulent kinetic energy present a maximum value around two particle diameters. For 

both particle sizes analyzed, increased flow velocity produces an increase of area under 

the curve of the particle turbulence intensity and turbulent kinetic energy. This effect can 

be explained as follows: as the flow velocity increases the mean, particles describe longer 

and higher jumps (as shown in Fig.5-11) allowing particles to move to higher elevations, 

increasing the vertical zone of influence of the turbulent parameters. 
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It is also observed, as the flow velocity is increased, the magnitude of the 

maximum value of the particle turbulence intensity in every direction and the TKEp 

increase. As the flow velocity becomes larger, the flow turbulent energy becomes larger 

and the velocity fluctuation of the fluid becomes more important relatively to the particle 

inertia, providing the particle more energy, which is expressed as TKEp. 

b) 

0 0.2 

d) 

• T*/T*0=1 

-T*/T*C=1.S 

- T * / T * = 2 

-A—T*/T*C=2.5 

0.4 0.6 0.8 

Figure 5-16: Particle turbulence intensity and particle turbulent kinetic energy vertical profile for 
multiple particle moving in a simulated velocity field. R =80. a) Stream-wise component of the 

turbulence intensity, b) Span-wise component of the turbulence intensity, c) Wall-normal component 
of the turbulence intensity, d) Particle turbulent kinetic energy. 
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The opposite effect is observed when the particle size increases: as the particle 

becomes larger, particle inertia becomes more important than the turbulent effects and 

therefore, the value of the particle turbulence intensity and turbulent kinetic energy tends 

to decrease. 
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Figure 5-17: Particle turbulence intensity and particle turbulent kinetic energy vertical profile for 
multiple particle moving in a simulated velocity field. R =120. a) Stream-wise component of the 

turbulence intensity, b) Span-wise component of the turbulence intensity, c) Wall-normal component 
of the turbulence intensity, d) Particle turbulent kinetic energy. 
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5.4.4 Effect of Volumetric Concentration on the Particle Intensity and Turbulent 

Kinetic Energy 

The effect of the volumetric concentration of particles (Cv) on the TKEp is 

presented in Fig. 5-18, considering the results of the simulation of multiple particles of 

size Rp=120, with a flow condition given by rt/rtc =2 for a concentration range varying 

between 0.05% to 0.3%. An increase of Cv increases the particle turbulence intensity 

and TKE„. As the particle volumetric concentration increases, the frequency of particle-

particle collision events is higher. 
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Figure 5-18: Particle turbulence intensity and particle turbulent kinetic energy vertical profile for 
multiple particle moving in a simulated velocity field. R =120, T, / r , c =2.5. Concentration 

variation, a) Stream-wise component of the turbulence intensity, b) Span-wise component of the 
turbulence intensity, c) Wall-normal component of the turbulence intensity, d) Particle turbulent 

kinetic energy. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

The motion of sediment particles close to river beds is notably complex. Several 

experimental and numerical works have provided insight into the nature of the saltating 

motion in the last decades, concerning the magnitude of the jump length and heights, and 

the total mass put into motion (Nino et al., 1994; Nino and Garcia, 1998a, b; Lee and 

Hsu, 1994, 1996). Researchers have addressed the conditions for initiation and cessation 

of saltation of the particles when they hit the bed, and have made tremendous progress in 

our understanding of the bed load phenomena. However, there are still significant 

questions without a definitive answer. 

This thesis endeavored to answer some of those questions, making important 

assumptions required to make such complicated phenomena tractable. Obviously, some 

of the results obtained in this research should be interpreted in light of those assumptions. 

Bed load transport in rivers was numerically simulated by combining a 

Lagrangian model describing the particle motion away from the bed (i.e., a flight model), 

a rebound model linking the particle velocity before and after the particle collision with 

the river bed, and a realistic bed roughness (surface) representation. These three 

components were analyzed in this thesis in order to provide a robust and efficient 

simulation tool for particles moving in saltation close to river beds. The model considers 

a Lagrangian-Eulerian approach, and it addresses multi-particle scenarios, including the 

effect of inter-particle collisions. 
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A new three-dimensional sub-model for particle free flight was developed and 

validated. By using available experimental data, it confirmed the necessity of including 

force terms that have been disregarded in previous simulations, such us the Basset force. 

The inclusion of all known forces in all directions is unprecedented for simulations of the 

motion of natural particles close to river beds. 

It was corroborated that the Basset force must be included in Lagrangian models 

of bed load transport for particle Reynolds numbers smaller than about 4,000. This means 

that the force needs to be considered for sand particles, but can be disregarded in gravel 

particles. The use of a semi-derivative approximation to calculate the Basset integral was 

found to reduce the computational cost by 20% as compared with alternative techniques 

usually employed to compute improper integrals. This thesis introduces a novel concept 

called the memory time period (7^flC^), i.e., the interval of time during which the history 

of the particle affects the current particle motion. The memory time period was estimated 

by using a fixed number of past jumps of the saltating particle and it was also associated 

with more physical time scales. It was concluded that the minimum number of past jumps 

to be considered in the Basset force term varies between 25 and 50, depending on flow 

conditions. The larger the value of r* (or u* ), the smaller the number of jumps required 

to approximate the Basset integral accurately. 

The approximation of the Basset force using the semi-derivative approach and the 

Tback concept reduces the computational time of the computations to about 70 to 90 

percent of the original simulation time (time reductions of 30 to 10%). These time 

reductions are significant in large simulations with multiple particles. 
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The free flight sub-model was paired with the rebound sub-models proposed by 

Tsuji et al. (1985) and Nino and Garcia (1994) (in two-dimensions). The beauty of the 

algorithm proposes by Tsuji et al. relies in its simplicity, inclusion of the particle angular 

and translation velocity after the collision, and the virtue of being easily extended to 

collisions between particles. 

Three surface roughness sub-models were proposed (named sub-model UDA, 

IBA and DBA, respectively). These sub-models provided simple approaches to simulate 

the random trajectory pattern that is observed in particles moving in bed load motion. All 

the sub-models assumed that the bed is composed by an array of uniformly-packed 

spheres and that the point of contact between the flying particle and the bed is the random 

parameter to simulate. The point of contact defines an inclination plane, which is 

specified by using two angles, 0^ and a^. The UDA sub-model assumes that both angles 

0b and ai, are uniformly distributed between -30° and 30°, and that these angles are 

determined through random number generators. The IBA and DBA sub-models are 

based on a geometrical relationship which connects 0^, a^, the incidence angles 0jn and 

a,„ and two random variables r, and r2. In the IBA sub-model the values of rj / dp and 

r2 / dp are obtained as random numbers uniformly distributed between 0 and 0.5, 

independently of the incidence angles. In the DBA sub-model, the values of rj/dp and 

r2 / d„ are obtained from a reduced range of values, assuming that they are uniformly 

distributed between a minimum and a maximum value depending on the incident angle. 

By constraining the range of variation of the random parameters, the range of variability 
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of the angles 0^ and a^ is reduced, obtaining only physically feasible points of contact 

between the flying particle and the bed. 

The proposed sub-models were compared with three existing bed roughness 

approximations. Four sets of friction and restitution coefficients were selected from the 

literature to evaluate the sensitivity of those values in the simulations. The results 

obtained showed that the DBA sub-model reproduces the experimental results with very 

good agreement for a large range of particle sizes. They also show the great variability in 

the results due to changes in the values of the friction and restitution coefficients for the 

same model. 

It is concluded that the representation of the bed roughness is crucial to model the 

bed load transport accurately. Values of the friction and restitution coefficients are also 

very important in defining the jump patterns. It is surprising that very little is discussed in 

the literature in that regard. 

A highly resolved three dimensional (HR3D) turbulent velocity field was coupled 

with the particle tracking code to study the effect of the flow velocity fluctuations on the 

particle characteristics. The velocity field was obtained by simulating flow through a flat 

plate. In spite of the intrinsic differences between the boundary layer on flat plates and in 

open channels (as pointing out by Nieuwstadt and Bradshaw (1997) and Ashrafian 

(2004)) the semi-logarithmic expression accurately described the mean stream-wise 

velocity for both flows. In this work it was shown that the HR3D turbulent flow provided 

a satisfactory velocity field for the purpose of the study. 

The one-way coupled code was validated though comparison with experimental 

data. The particle turbulent intensity in each direction (stream-wise, span-wise, and wall-
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normal) was defined as a measure of the particle velocity fluctuation due to the 

turbulence with respect to the mean value, and the particle turbulent kinetic energy, was 

defined as the sum of the particle intensity in all three components; these variables were 

calculated to characterize the particle response to the flow variability. The detailed study 

of these parameters for particles moving in bed load motion has not been considered in 

previous studies and it constitutes one of the main contributions of this dissertation. In 

order to formally define the mean value for the particle velocity, a new filter was 

proposed. The discontinuity pattern observed in the particle velocity due to the effect of 

wall-particle collision defines the basic characteristics of this filter, which constitutes 

another contribution of this work. The variations of particle intensity and turbulent 

kinetic energy in the vertical direction were analyzed, showing that the zone of influence 

of both variables is located within a distance of around a few particle diameters from the 

bottom of the channel. 

The effect of inter-particle collisions was also analyzed: two simulations were 

developed with the same flow conditions, with and without considering collisions. The 

results showed that collisions increased particle intensity and the turbulent kinetic energy, 

which indicates that collisions provide an additional source of turbulent energy to the 

saltating particle, as expected. 

The effects of the particle size, flow velocity and particle concentration on the 

particle turbulent intensity and turbulent kinetic energy were also studied. Increasing the 

particle size diminishes the particle turbulence intensity and the turbulent kinetic energy, 

as the particle inertia becomes bigger, and the particle is less influenced by the turbulent 

fluctuations of the surrounding flow. Increasing the flow velocity produces an expansion 
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of the zone of influence of the particle intensity and turbulent kinetic energy close to the 

wall, as the particles are capable of moving to higher elevations. A slight increase of the 

value of both jump height and length is also obtained as the flow velocity is increased, 

since the particle moves to zones where the flow intensity and turbulent kinetic energy 

are bigger. As the particle concentration increases, the values of turbulent intensity and 

turbulent kinetic energy increase, due to the increase of the number of events of inter-

particle collision. All this highlights the importance of including the detailed simulation 

of the turbulence in bed load, not only because the total transport of sediments changes 

but also because this sheds light in the interaction of particles with the flow. 

The particle tracking model developed in this work presents a level of detail 

without precedent. However, all models constitute approximations to the problem under 

analysis and are, therefore, imperfect. The aim of this work was to represent the key 

physical processes of bed load transport as close as possible so that the main 

characteristics of the system of interest were replicated. In this case, the main features of 

the bed load transport (particle jump height, length, and mean stream-wise and angular 

velocity) were simulated with good accuracy. In the most realistic scenario simulated, 

i.e., multiple particles in a highly resolved turbulent velocity field, the prediction of the 

volumetric bed load rate showed a very good agreement with highly-used expressions. 

Summarizing, the model presented in this work provides the following 

contributions: 

• All the forces acting on a particle are considered. 

• The computation of the Basset force was optimized. 

• A new 3-D bed roughness representation was introduced. 
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• Inter-particle collisions was considered. 

• A new filter to calculate the mean particle velocity for the turbulent flow 

in bed load transport was presented. With this filter, the particle turbulent 

intensity and kinetic energy were defined and calculated. 

• The effect of particle size, flow condition and particle concentration in the 

particle turbulent parameters was addressed. 

Future work will involve computational activities to learn more about the 

accuracy of the models developed here. In the first area, the particle tracking code was 

developed in such a way that two-way coupling can be easily incorporated. By simulating 

a turbulent open-channel flow with a two-way coupling, the effect of particles on the 

fluid flow turbulence can be studied. Conclusions related to the exchange of energy and 

momentum between both phases (fluid and particle) can be achieved by comparing the 

results obtained in this thesis with simulations of two-way coupling. The influence of the 

particle size, volumetric concentration, flow rate, and inter-particle collisions can be 

studied in a two-way coupling scenario to elucidate how those parameters modify the 

particle turbulent characteristics. This will lead to a more complete understanding of the 

particle-laden phenomenon in rivers. 
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APPENDIX A 

COMPUTATIONAL CODE 

PROGRAM SALTATE15 
USE VELOCITY 
OPEN(999,STATUS='UNKNOWN•,FILE='MATRIX_INDEX.DAT') 
JJ=0 
TIME=0.0D0 
MIN_TBEGIN=0.0D0 
MIN_TBEGIN_O=0.0D0 
NODE_NUMBER=0.0D0 
CONC_COUNTER=0 
ALLOCATE(X(NX)) 
ALLOCATE(Y(NY)) 
ALLOCATE(Z(NZ)) 
ALLOCATE(U(NX,NZ,NY)) 
ALLOCATE(V(NX,NZ,NY)) 
ALLOCATE(W(NX,NZ,NY)) 
ALLOCATE(U_F(NX,NZ,NY)) 
ALLOCATE(V_F(NX,NZ, NY)) 
ALLOCATE(W_F(NX,NZ,NY)) 
! ALLOCATE MEMORY FOR VELOCITY FIELD (U,V,W) 
CALL LOAD_GRID 1GRID INFORMATION IN ARRAY X,Y,Z 
! VELOCITY INFORMATION IN 3D MATRIX U,V,W 
CALL LOAD_VELOCITY(TIME,TIME_V,TIME_VP1) 
IUNIT=100 
CALL CREATE_FILES(IUNIT) 
! INITIAL PARTICLE CONDITIONS 
OPEN(UNIT=50,STATUS='UNKNOWN',FILE='INITIAL_POSITION.TXT') 
OPEN(UNIT=60,STATUS='UNKNOWN',FILE='INITIAL_VELOCITY.TXT') 
OPEN(UNIT=7 0,STATUS='UNKNOWN' ,FILE='INITIAL_ROTATION.TXT') 
NULLIFY(BEGIN_LIST) 
DO 100 II=1,N_PARTICLES 

READ(50,*) XPM_N(II),YPM_N(II),ZPM_N(II) 
READ(60,*) UPM_N(II),VPM_N(II),WPM_N(II) 
READ(70,*) RPX_N(II),RPY_N(II),RPZ_N(II) 
XPM_N(II)=XPM_N(II)+X_MIN !ABSOLUTE SYSTEM OF REFERENCE 
YPM_N(II)=YPMJST(II)+Y_MIN 
MATRIX_INDEX(11,1)= 0 
MATRIX_INDEX(11,2)= 0 
CALL UPDATE(II) 
TBEGIN(II)=0.0D0 IBEGGINING TIME FOR BASSET COMPUTATION 

! DEFINITION OF STATISTICAL PARAMETERS 
I 

JUMPL(II)=0.0D0 
JUMPH(II)=0.0D0 
JUMPINI(II)=XPM_N(II) 
N_REB(II)=0 

100 END DO 
CALL ACCESORIES(TIME) 

! PROGRAM CONDITIONS. TIME INITIAL CONDITIONS 



EXT=0 
TIME=DT 
JJ=1 
IDENTIFICATION OF RUN CHARACTERISTICS 

WRITE(*,*)'NBACK=',N_BACK 
WRITE(*,*)'TFIN=',TFIN 
WRITE(*,*)'RP=',RP 
WRITE(*,*)'TAU *=',TAUS 
LOOP TIME-ADVANCE CALCULATION 

1001 DO 500 WHILE(TIME.LT.TFIN.AND.EXT.EQ.O) 
LOOP PARTICLE VELOCITIES 

DO 550 II=1,N_PARTICLES 
DEFINITION OF DIMENSIONLESS PARAMETERS PER PARTICLE 
URA=URM(II) 
CD=DRAG(URA,TAUS,RP) 
ALFA=1.0D0/(R+l.0D0+CM*VM) 
BETA=-3.0D0/4.0D0*ALFA*CD*DR 
GU=ALFA/TAUS*SIN(TITA)*SW 
GW=ALFA/TAUS*COS(TITA)*SW 
DELTA=3.ODO/4.0D0*ALFA*CL*LF 
EPS=ALFA*CM*VM 
KAPA=9.0D0*ALFA/(SQRT(RP*PI)*TAUS**0.25D0)*BS 
XPM_N(II)=XPM_0(II)+UPM_0(II)*DT 
IF (XPM_N(II).LT.X_MIN) XPM_N(II)=XPM_N(II)+X_MIN 
IF (XPM_N(II).GT.X_MAX) XPM_N(II)=XPM_N(II)-X_MAX+X_MIN 
YPM_N(II)=YPM_0(II)+VPM_0(II)*DT 
IF (YPM_N(II).LT.Y_MIN) YPM_N(II)=YPM_N(II)+Y_MIN 
IF (YPM_N(II).GT.Y_MAX) YPM_N(II)=YPM_N(II)-Y_MAX+Y_MIN 
ZPM_N(II)=ZPM_0(II)+WPMJD (II)*DT 
RPX_N(II)=RPX_0(II)+ARX(II)*DT 
RPY_N(II)=RPY_0(II)+ARY(II)*DT 
RPZ_N(II)=RPZ_0(II)+ARZ(II)*DT 
II-TH PARTICLE NEW VELOCITY CALCULATION 
CALCULATED USING EULER (METHOD=l) OR RUNGE KUTTA (METHOD=2) 
UU(1)=UPM_0(II) 
UU(2)=VPM_0(II) 
UU(3)=WPM_0(II) 
CALL DERIV(TIME-DT,UU,DUDT,II) 
IF (METHOD.EQ.1) THEN 

UPM_N(II)=UPM_0(II)+DT*DUDT(1) 
VPM_N(II)=VPM_0(II)+DT*DUDT(2) 
WPM_N(II)=WPM_0(II)+DT*DUDT(3) 

ELSE 
CALL RUNGE(UU,DUDT,UOUT,II) 
UPM_N(II)=UOUT(l) 
VPM_N(II)=UOUT(2) 
WPM_N(II)=UOUT(3) 

END IF 
CALCULATE H & L OF JUMP 

ZPC=ZPM_N(II) 
IF (ZPC.GT.JUMPH(II)) JUMPH(II)=ZPC 
IF (XPM_N(II)-JUMPINI(II).GT.JUMPL(II)) THEN 
JUMPL(II)=XPM_N(II)-JUMPINI(II) 
END IF 
IF(ZPC.LE.0.5D0)THEN 
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CALL WALL_COLLISION(II) 
ENDIF 

550 END DO 
! CHECK FOR PARTICLE-PARTICLE COLLISION 
DO 560 LL=1,N_PARTICLES 
DO 565 KK=LL,N_PARTICLES 

IF(KK.GT.LL)THEN 
DX=XPM_N(LL)-XPM_N(KK) 
DY=YPM_N(LL)-YPM_N(KK) 
DZ=ZPM_N(LL)-ZPM_N(KK) 

DIST=SQRT(DX**2.0D0+DY**2.0D0+DZ**2.0D0) 
IF (DIST.LE.SAFE*1.0D0) THEN 

CALL COLLISION(LL,KK) 
END IF 

END IF 
565 END DO 
560 END DO 
CALL ACCESORIES(TIME) ! 
! OUTPUT FOR EACH PARTICLE 
CALL OUTPUT(TIME,IUNIT) 
! UPDATE INFORMATION AND CHECK FOR MEMORY DEALLOCATION 
i 

MIN_TBEGIN=TBEGIN(1) 
DO 580 II=1,N_PARTICLES 

CALL UPDATE(II) ! SWITCH OLD VALUES FOR NEW VALUES 
T=TBEGIN(II) 
MIN_TBEGIN=MIN(MINJTBEGIN,T) 

58 0 END DO 
! IF A NEW TIME FOR THE BASSET TERM IS COMPUTED 
! THEN THE SUBROUTINE LIB_MEMORY IS CALLED 

IF (MINJTBEGIN.GT.0.0D0.AND.MINJTBEGIN.GT.MINJTBEGINJD) THEN 
CALL LIB_MEMORY(MINJTBEGIN) 

END IF 

MINJTBEGIN_0=MIN_TBEGIN 
1002 TIME=TIME+DT 
WRITE(*,*) 'SIMULATION TIME: •,TIME 
IF (TIME.GE.TIME JVP1) THEN 

CALL LOAD_VELOCITY(TIME,TIME_V,TIME_VP1) 
END IF 

WRITE(3 00,501)TIME,T_V,T_VP1,IG,JG,KG 
501 FORMAT(1( ' ', F36.20, ' '),5( ' ', 110, ' ') ) 
JJ=JJ+1 
500 END DO 
DO II=1,N_PARTICLES 

WRITE(999,*) MATRIX_INDEX(11,1),MATRIX_INDEX(11,2) 
WRITE(991,*) XPM_0(II),YPM_0(II),ZPMJO(II) 
WRITE(992,*) UPM_0(II),VPM_0(II),WPM_0(II) 
WRITE(993,*) RPX_0(II),RPY_0(II),RPZ_0(II) 

END DO 
NULLIFY(NJNODE) 
NJNODE => BEGINJLIST ! MAKE CURRENT POINT TO HEAD OF LIST 
K=0 
! DEALLOCATE ALL MEMORY ASSOCIATED TO BASSET FORCE 
DO 600 K=0,NODE_NUMBER 
IF (.NOT. ASSOCIATED(NJNODE)) EXIT ! EXIT IF NULL POINTER 
BEGIN LIST => N NODE%NEXT ! MAKE LIST POINT TO NEXT NODE OF HEAD 
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DEALLOCATE(N_NODE) ! DEALLOCATE CURRENT HEAD NODE 
NULLIFY(N_NODE) 
N_NODE => BEGIN_LIST ! MAKE CURRENT POINT TO NEW HEAD 
600 END DO 
CALL CLOSE_FILES(IUNIT) 
CLOSE(999) 
DEALLOCATE(X) 
DEALLOCATE(Y) 
DEALLOCATE(Z) 
DEALLOCATE(U) 
DEALLOCATE(V) 
DEALLOCATE(W) 
DEALLOCATE(U_F) 
DEALLOCATE(V_F) 
DEALLOCATE(W_F) 
END PROGRAM SALTATE15 

MODULE VELOCITY 
INCLUDE 'PARAM.FI' 
INCLUDE 'INPUT.FI' 
CONTAINS 
! FLUID PROPERTIES 
! DRAG COEFFICIENT CALCULATION (CD) 
j 

DOUBLE PRECISION FUNCTION DRAG (UR,T,RIP) 
IMPLICIT NONE 
DOUBLE PRECISION J,T,RIP,RE,UR 
RE = UR*SQRT(T)*RIP 
DRAG = 24/RE*(1.0D0+0.15D0*SQRT(RE)+0.017D0*RE)-
0.2 08D0/(1.0D0+10000.D0*RE**(-0.5D0)) 
END FUNCTION DRAG 
! VELOCITY FIELD AT (IG,JG,KG) OBTAIN AS A LINEAR INTERPOLATION OF 
! TIME_V AND TIME_VP1 
DOUBLE PRECISION FUNCTION U_VELOCITY_TEMP (IG,KG,JG) 
IMPLICIT NONE 
INTEGER IG,JG,KG 
DOUBLE PRECISION U_V,UJTIME, U_TIMEP1 
U_TIME=U(IG,KG,JG) 
U_TIMEP1=U_F(IG,KG,JG) 
IF (TIME.EQ.TIME_V) THEN 

U_VELOCITY_TEMP=U_TIME 
ELSE IF (TIME.EQ.TIME_VP1) THEN 

U_VELOCITY_TEMP=U_TIMEPl 
ELSE 

U_VELOCITY_TEMP=U_TIME+(UJTIMEPl-UJTIME)/(TIME_VP1-TIME_V)*(TIME-
TIME^) 
END IF 
END FUNCTION U_VELOCITY_TEMP 

DOUBLE PRECISION FUNCTION V_VELOCITY_TEMP (IG,KG,JG) 
IMPLICIT NONE 
INTEGER IG,JG,KG 
DOUBLE PRECISION U_V,U_TIME,UJTIMEP1 
U_TIME=V(IG,KG,JG) 
U_TIMEP1=V_F(IG,KG, JG) 
IF (TIME.EQ.TIME_V) THEN 

V VELOCITY TEMP=U TIME 
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ELSE IF (TIME.EQ.TIME_VP1) THEN 
V__VEL0CITY_TEMP=U_TIMEP1 

ELSE 
V_VELOCITY_TEMP=U_TIME+(U_TIMEP1-U_TIME)/(TIME__VP1-TIME_V)*(TIME-

TIME_V) 
END IF 
END FUNCTION V_VELOCITY_TEMP 

DOUBLE PRECISION FUNCTION W_VELOCITY_TEMP (IG,KG,JG) 
IMPLICIT NONE 
INTEGER IG,JG,KG 
DOUBLE PRECISION U_V,U_TIME,U_TIMEP1 
U_TIME=W(IG,KG,JG) 
U_TIMEP1=W_F(IG,KG,JG) 
IF (TIME.EQ.TIME_V) THEN 
W_VELOCITY_TEMP=U_TIME 
ELSE IF (TIME.EQ.TIME_VP1) THEN 

W_VEL0CITY_TEMP=U_TIMEP1 
ELSE 

W_VELOCITY_TEMP=U_TIME+(U_TIMEP1-U_TIME)/(TIME_VP1-TIME_V)*(TIME-
TIME_V) 
END IF 
END FUNCTION W_VELOCITY_TEMP 

! CALCULATE SPATIAL DERIVATIVES AT LOCATION (IG,JG,KG) 
SUBROUTINE FLU_DERIV(IG,KG,JG) 
IMPLICIT NONE 
INTEGER IG,JG,KG 
REAL UP1,UM1,VP1,VM1,WP1,WM1 
REAL XP1,XM1,YP1,YM1,ZP1,ZM1 
IF (IG.NE.NX)THEN 

UPl=U_VELOCITY_TEMP{IG+1,KG,JG) 
UMl=U_VELOCITY_TEMP(IG,KG,JG) 
VPl=V_VELOCITY_TEMP(IG+1,KG,JG) 
VMl=V_VELOCITY_TEMP(IG,KG,JG) 
WPl=W_VELOCITY_TEMP(IG+1,KG,JG) 
WMl=W_VELOCITY_TEMP(IG,KG,JG) 
XP1=X(IG+1) 
XM1=X(IG) 

ELSE IF (IG.EQ.NX) THEN 
UP1=U__VEL0CITY_TEMP (IG, KG, JG) 
UM1=U_VEL0CITY_TEMP(IG-1,KG,JG) 
VPl=V_VELOCITY_TEMP(IG,KG,JG) 
VMl=V_VELOCITY_TEMP(IG-1,KG,JG) 
WP1=W_VEL0CITY_TEMP(IG,KG,JG) 
WMl=W_VELOCITY_TEMP(IG-1,KG,JG) 
XP1=X(IG) 
XM1=X(IG-1) 

END IF 
DU_DX=(UP1-UM1)/(XP1-XM1) 
DV_DX=(VP1-VM1)/(XP1-XM1) 
DW_DX=(WP1-WM1)/(XP1-XM1) 
IF (JG.NE.NY)THEN 

UPl=U_VELOCITY_TEMP(IG,KG,JG+1) 
UMl=U_VELOCITY_TEMP(IG,KG,JG) 
VPl=V_VELOCITY_TEMP(IG,KG,JG+1) 
VM1=V VELOCITY TEMP(IG,KG,JG) 
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WP1=W_VEL0CITY_TEMP(IG,KG,JG+1) 
WM1=W_VEL0CITY_TEMP(IG,KG,JG) 
YP1=Y(JG+1) 
YM1=Y(JG) 

ELSK IF (JG.EQ.NY) THEN 
UP1=U_VEL0CITY_TEMP(IG,KG, JG) 
UM1=U_VEL0CITY_TEMP(IG,KG,JG-1) 
VP1=V_VEL0CITY_TEMP(IG,KG,JG) 
VM1=V_VEL0CITY_TEMP(IG,KG,JG-1) 
WP1=W_VEL0CITY_TEMP(IG,KG,JG) 
WM1=W_VEL0CITY_TEMP(IG,KG,JG-1) 
YP1=Y(JG) 
YM1=Y(JG-1) 

END IF 
DU_DY=(UP1-UM1)/(YP1-YM1) 
DV_DY=(VP1-VM1)/(YP1-YM1) 
DW_DY=(WP1-WM1)/(YP1-YM1) 
IF (KG.NE.NZ)THEN 

UP1=U_VEL0CITY_TEMP(IG,KG+1, JG) 
UM1=U_VEL0CITY_TEMP(IG,KG,JG) 
VP1=V_VEL0CITY_TEMP(IG,KG+1,JG) 
VM1=V_VEL0CITY_TEMP(IG,KG,JG) 
WP1=W_VEL0CITY_TEMP(IG,KG+1,JG) 
WM1=W_VEL0CITY_TEMP(IG, KG, JG) 
ZP1=Z(KG+1) 
ZM1=Z(KG) 

ELSE IF (KG.EQ.NZ) THEN 
UP1=U_VEL0CITY_TEMP(IG, KG, JG) 
UM1=U_VEL0CITY_TEMP(IG,KG-1,JG) 
VP1=V_VEL0CITY_TEMP(IG,KG,JG) 
VM1=V_VEL0CITY_TEMP(IG,KG-1,JG) 
WP1=W_VEL0CITY_TEMP(IG, KG, JG) 
WM1=W_VEL0CITY_TEMP(IG,KG-1,JG) 
ZP1=Z(KG) 
ZM1=Z(KG-1) 

END IF 
DU_DZ=(UP1-UM1)/(ZP1-ZM1) 
DV_DZ=(VP1-VM1)/(ZP1-ZM1) 
DW_DZ=(WP1-WM1)/(ZP1-ZM1) 
AUF=(U_F(IG,KG,JG)-U(IG,KG,JG))/(TIME_VP1-TIME_V) 
AVF=(V_F(IG,KG,JG)-V(IG,KG,JG))/(TIME_VP1-TIME_V) 
AWF=(W_F(IG,KG,JG)-W(IG,KG,JG))/(TIME_VP1-TIME_V) 
END SUBROUTINE FLU_DERIV 

! FINAL CALCULATION OF THE VELOCITY FIELD AT LOCATION (IG,JG,KG) 
! INCLUDES BOTH EFECT: SPATIAL AND TEMPORAL VARIATION 
DOUBLE PRECISION FUNCTION U_VELOCITY(IG,KG,JG) 
IMPLICIT NONE 
INTEGER IG,JG,KG 
DOUBLE PRECISION XP,YP,ZP,XI,YJ,ZK 
XP=XPM_0(II) 
YP=YPM_0(II) 
ZP=ZPM_0(II) 
XI=X(IG) 
YJ=Y(JG) 
ZK=Z(KG) 



U_VELOCITY=U_VELOCITY_TEMP(IG,KG,JG)+DUJ3X*(XP-XI)+DU_DY*(YP-
YJ)+DU_DZ*(ZP-ZK) 
END FUNCTION U_VELOCITY 

DOUBLE PRECISION FUNCTION VJVELOCITY(IG,KG,JG) 
IMPLICIT NONE 
INTEGER IG,JG,KG 
DOUBLE PRECISION XP,YP,ZP,XI,YJ,ZK 
XP=XPM_0(II) 
YP=YPM_0(II) 
ZP=ZPM_0(II) 
XI=X(IG) 
YJ=Y(JG) 
ZK=Z(KG) 
V_VELOCITY=V_VELOCITY_TEMP(IG,KG,JG)+DV_DX*(XP-XI)+DV_DY*(YP-
YJ)+DV_DZ*(ZP-ZK) 
END FUNCTION V_VELOCITY 

DOUBLE PRECISION FUNCTION W_VELOCITY(IG,KG,JG) 
IMPLICIT NONE 
INTEGER IG,JG,KG 
DOUBLE PRECISION XP,YP,ZP,XI,YJ,ZK 
XP=XPM_0(II) 
YP=YPM_0(II) 
ZP=ZPM_0(II) 
XI=X(IG) 
YJ=Y(JG) 
ZK=Z(KG) 
W_VELOCITY=W_VELOCITY_TEMP(IG,KG,JG)+DW_DX*(XP-XI)+DW_DY*(YP-YJ) 
+DW_DZ*(ZP-ZK) 
END FUNCTION WJVELOCITY 

! VORTICITY CALCULATION AT (IG,JG,KG) USING SPATIAL AND TEMPORAL 
! DERIVATIVES AT THE SPECIFIC LOCATION 
DOUBLE PRECISION FUNCTION VORTICITY_X (IG,KG,JG) 
IMPLICIT NONE 
INTEGER IG,JG,KG 
DOUBLE PRECISION DWDY,DVDZ 
VORTICITY_X=DW_DY-DV_DZ 
END FUNCTION VORTICITY_X 

DOUBLE PRECISION FUNCTION VORTICITY_Y (IG,KG,JG) 
IMPLICIT NONE 
INTEGER IG,JG,KG 
DOUBLE PRECISION DUDZ,DWDX 
VORTICITY_Y=DU_DZ-DW_DX 
END FUNCTION VORTICITY_Y 

DOUBLE PRECISION FUNCTION VORTICITY_Z (IG,KG,JG) 
IMPLICIT NONE 
INTEGER IG,JG,KG 
DOUBLE PRECISION DVDX,DUDY 
VORTICITY_Z=DV_DX-DU_DY 
END FUNCTION VORTICITY_Z 

! ROTATION-DRAG COEFFICIENT CALCULATION (CT) 



DOUBLE PRECISION FUNCTION DRAG_ROT(RR,T,RIP) 
IMPLICIT NONE 
DOUBLE PRECISION J,T,RIP,RER,RR 
DOUBLE PRECISION, DIMENSION(3) :: C 
RER =MIN(RR*SQRT(T)*RIP/4.0D0,3 00.0D0) 
IF(RER.LE.l.ODO) THEN 

C = (/ 0.0D0, 50.27D0, 0.0D0 /) 
ELSE IF (RER.GT.1.0D0.AND.RER.LE.10.0D0) THEN 

C = (/ 0.0D0, 50.27D0, 0.0418D0 /) 
ELSE IF (RER.GT.10.0D0.AND.RER.LE.20.0D0) THEN 

C = (/ 5.32D0, 37.2D0, 5.32D0 /) 
ELSE IF (RER.GT.20.0D0.AND.RER.LE.50.0D0) THEN 

C = (/ 6.44D0, 32.2D0, 6.44D0 /) 
ELSE 

C = (/ 6.45D0, 32.1D0, S.45D0/) 
END IF 
DRAG_ROT = C(l)/SQRT(RER)+C(2)/RER+C(3)*RER 
END FUNCTION DRAG_ROT 

SUBROUTINE BASSET(T,II) 
IMPLICIT NONE 
DOUBLE PRECISION SUMU,T,X,URU,URD,UR,TO,I_UP,I_DW 
DOUBLE PRECISION SUMW,WRU,WRD,WR,GAMMA,TBACK_A 
DOUBLE PRECISION SUMV,VRU,VRD,VR,T_NODE 
INTEGER II,K,JU,JD,N_MAX 
IF(T.LT.DT)THEN 

BUINTE=0.0D0 
BVINTE=0.0D0 
BWINTE=0.0D0 

ELSE 
SUMU=0.0D0 
SUMV=0.0D0 
SUMW=0.0D0 
K=0 
TBACK_A=TBEGIN(II) 
IF(T.GT.TBACK_A) THEN 
T0=TBACK_A 

ELSE 
T0=0.0D0 

END IF 
N_MAX=MAX(1000,CEILING((T-T0)/DT)) 
NULLIFY(U_NODE) 
U_NODE= >BEGIN_LIST 
T_NODE=U_NODE % T 
DO 125 WHILE (K.LE.N_MAX-1) 

X=(T-K*(T-TO)/NJVIAX) 
DO 110 WHILE (T_NODE.GT.X.AND.ASSOCIATED(U_NODE%NEXT)) 

U_NODE=>U_NODE %NEXT 
T_NODE=U_NODE%T 
IF(.NOT.ASSOCIATED(U_NODE%NEXT)) T_NODE=-1.0D0 

110 END DO 
UR=U_NODE%BASSET_VALUE(1,11) 
VR=U_NODE%BASSET_VALUE(2,11) 
WR=U_NODE%BASSET_VALUE(3,II) 
I_UP=K+0.5D0 
I_DW=K.+ 1. 0D0 
GAMMA=EXP(DGAMMALN(I UP)-DGAMMALN(I DW)) 
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SUMU=SUMU+GAMMA*UR 
SUMV=SUMV+GAMMA*VR 
SUMW=SUMW+GAMMA*WR 
K=K+1 

125 END DO 
BUINTE=SUMU*SQRT((T-TO)/N_MAX) 
BVINTE=SUMV*SQRT((T-TO)/N_MAX) 
BWINTE=SUMW*SQRT((T-TO)/N_MAX) 
END IF 
END SUBROUTINE BASSET 
! PARTICLE VELOCITY DERIVATIVE FOR PARTICLE II 
i 

SUBROUTINE DERIV(T,UU,DUDT,SS,II) 
IMPLICIT NONE 
DOUBLE PRECISION UPOLD,WPOLD,UROLD,UFOLD,T 
DOUBLE PRECISION VPOLD,VFOLD,SS,UFLUID 
DOUBLE PRECISION DUFO,WFOLD,URTOP,URBOT,Z_AUX 
DOUBLE PRECISION, DIMENSION (3)::DUDT,UU 
INTEGER II,I,J,K 
UPOLD=UU(1) 
VPOLD=UU(2) 
WPOLD=UU(3) 
CALL LOCATE(II,IG,KG,JG) 
UFOLD=U_VELOCITY(IG,KG,JG) 
VFOLD=V_VELOCITY(IG,KG, JG) 
WFOLD=W_VELOCITY(IG,KG,JG) 
CALL FLU_DERIV(IG,KG,JG) 
UROLD=SQRT((UPOLD-UFOLD)**2.0D0+(WPOLD-WFOLD)**2.0D0+(VPOLD-
VFOLD)**2.0D0) 
CD=DRAG(UROLD,TAUS,RP) 
BETA=-0.7 5D0 *ALFA* CD 
Z_AUX=ZPM_0(II) !KEEP OLD VALUE OF ZPM 
ZPM__O(II)=ZPM_O(II)+0.5D0 iRECALCULATE ZPM FOR LIFT FORCE 
CALL LOCATE(II,I,K,J) 
UFLUID=U_VELOCITY(I,K,J) 
URTOP=(UPOLD-UFLUID)**2.0D0+(VPOLD-VFOLD)**2.0D0+(WPOLD-WFOLD)**2.0D0 
ZPM_O(II)=Z_AUX-0.5D0 'RECALCULATE ZPM FOR LIFT FORCE 
IF(ZPM_0(II).GT.0.5D0)THEN 
CALL LOCATE(II,I,K,J) 
UFLUID=U__VELOCITY (I, K, J) 
URBOT=(UPOLD-UFLUID)**2.0D0+(VPOLD-VFOLD)**2.0D0+(WPOLD-WFOLD)**2.0D0 
ELSE 
URBOT=UPOLD**2.0D0+(WPOLD-WFOLD)**2.0D0+(VPOLD-VFOLD)**2.0D0 
END IF 
URMT2(II)=URTOP 
URMB2(II)=URBOT 
ZPM_0(II)=Z_AUX !RESTORE OLD VALUE OF ZPM_0 
IF(KAPA.NE.O.ODO) CALL BASSET (T,II) 
DUDT(1)=BETA*UROLD*(UPOLD-UFOLD)+ 
EPS*(UPOLD*DU_DX+VPOLD*DU_DY+WPOLD*DU_DZ+AUF)+GU+KAPA*BUINTE 
DUDT(2)=BETA*UROLD*(VPOLD-VFOLD)+KAPA*BVINTE 
+EPS*(UPOLD*DV_DX+VPOLD*DV_DY+WPOLD*DV_DZ+AVF) 
DUDT(3)=BETA*UROLD*(WPOLD-WFOLD)+DELTA*(URTOP-URBOT)-GW 
+KAPA*BWINTE+0.75D0*ALFA*UROLD*(SS-0.5D0*DU_DZ)*MG 
+EPS*(UPOLD*DW_DX+VPOLD*DW_DY+WPOLD*DW_DZ+AWF) 
END SUBROUTINE DERIV 
! RUNGE KUTTA U VELOCITY 



SUBROUTINE RUNGE(Y,DYDX,YOUT,SS,II) 
IMPLICIT NONE 
INTEGER II,JJ,I 
DOUBLE PRECISION HH,H6,XH,SS 
DOUBLE PRECISION,DIMENSION (3)::DYM,DYT,YT,Y,DYDX,YOUT 
HH=DT*0.5D0 
H6=DT/6.0D0 
! FIRST STEP 
DO 11 1=1,3 

YT(I)=Y(I)+HH*DYDX(I) 
11 END DO 

! SECOND STEP 
CALL DERIV(TIME-0.5D0*DT,YT,DYT,SS,II) 

! SECOND STEP 
DO 21 1=1,3 

YT(I)=Y(I)+HH*DYT(I) 
21 END DO 

CALL DERIV(TIME-0.5D0*DT,YT,DYM,SS,II) 
! THIRD STEP 

DO 31 1=1,3 
YT(I)=Y(I)+DT*DYM(I) 
DYM(I)=DYT(I)+DYM(I) 

31 END DO 
CALL DERIV(TIME,YT,DYT,SS,II) 

! FOURTH STEP 
DO 41 1=1,3 

YOUT(I)=Y(I)+(DYDX(I)+DYT(I)+DYM(I)* 2.0D0)*H6 
41 END DO 

END SUBROUTINE RUNGE 

!CALCULATE VALUES OF ACCELERATION AND BASSET THE VALUE OF U,V AFTER 
!RUNGE KUTTA APPROX. 
SUBROUTINE ACCESORIES(TIME) 
IMPLICIT NONE 
INTEGER II 
DOUBLE PRECISION VFY,VFX,VFZ,TIME 
DOUBLE PRECISION UPOLD,VPOLD,WPOLD 
ALLOCATE(N_NODE) ! CREATE NEW NODE 
NODE_NUMBER=NODE_NUMBER+1 
DO II=1,N_PARTICLES,1 

AUP(II)=(UPM_N(II)-UPM_0(II))/DT 
AVP(II)=(VPM_N(II)-VPM_0(II))/DT 
AWP(II)=(WPM_N(II)-WPM_0(II))/DT 
UPOLD=UPM_0(II) 
VPOLD=VPM_0(II) 
WPOLD=WPM_0(II) 
CALL LOCATE(II,IG,KG,JG) 
UFM(II)=U_VELOCITY(IG,KG,JG) 
VFM(II)=V_VELOCITY(IG,KG,JG) 
WFM(II)=W_VELOCITY(IG,KG,JG) 
CALL FLU_DERIV(IG,KG, JG) 
URM(II)=SQRT((UPM_N(II)-UFM(II))**2.0D0 

+(VPM_N(II)-VFM(II))**2.0D0+(WPM_N(II)-WFM(II))**2.0D0) 

N_NODE%T = TIME ! GIVING THE TIME VALUE 
N NODE%BASSET VALUE(1,11) = AUF-AUP(II)+UPOLD*DU DX+VPOLD*DU DY 



+WPOLD*DU_DZ 
N_N0DE%BASSET_VALUE(2,II) = AVF-AVP(II)+UPOLD*DV_DX+VPOLD*DV_DY 

+WPOLD*DV_DZ 
N_NODE%BASSET_VALUE(3,11) = AWF-AWP(II)+UPOLD*DW_DX+VPOLD*DW_DY 

+WPOLD*DW_DZ 
! PARTICLE ROTATION MOTION 

VFX=VORTICITY_X(IG,KG,JG) 
VFY=VORTICITY_Y(IG,KG,JG) 
VFZ=VORTICITY_Z(IG,KG,JG) 
RREL(II)=SQRT((RPX_0(II))**2.0D0+(RPY_0(II)-

VFY)**2.0D0+RPZ_O(II))**2.0D0) 
RRA=RREL(II) 
CT=DRAG_ROT(RRA,TAUS,RP) 
ETA=-15.0D0*CT/16.ODO/PI/(R+l.0D0) 
ARX(II)=MIN(10.0DO,MAX(-10.0DO,ETA*RREL(II)*(RPX_0(II)))) 
ARY(II)=MIN(10.0D0,MAX(-10.0D0,ETA*RREL(II)*(RPY_0(II)-VFY))) 
ARZ(II)=MIN(10.0D0,MAX(-10.0D0,ETA*RREL(II)*(RPZ_0(II)))) 

END DO 
N_NODE%NEXT => BEGIN_LIST ! POINT TO PREVIOUS ONE 
BEGIN_LIST => NJSTODE ! UPDATE HEAD OF LIST 
END SUBROUTINE ACCESORIES 
! THIS SUBROUTINES ALLOWS THE CALCULATION OF THE NEW TIME STEP 
! SETTING THE OLD VALUES FOR THE NEW VALUES 
i 

SUBROUTINE UPDATE (II) 
IMPLICIT NONE 
INTEGER II 
UPM_0(II)=UPM_N(II) 
VPM_0(II)=VPM_N(II) 
WPM_0(II)=WPM_N(II) 
XPM_0(II)=XPM_N(II) 
YPM_0(II)=YPM_N(II) 
ZPM_0(II)=ZPM_N(II) 
RPX_0(II)=RPX_N(II) 
RPY_0(II)=RPY_N(II) 
RPZ_0(II)=RPZ_N(II) 
END SUBROUTINE UPDATE 

! RANDOM NUMBERS GENERATOR 
! MINIMAL RANDOM NUMBER RENERATOR OF PARKER & MILLER. RETURNS 
! UNIFORM NUMBER BETWEEN 0-1. CALL WITH IDUM A NEGATIVE INTEGER TO 
INITIALIZA 
! DO NOT ALTER IDUM BETWEEN SUCCESSIVE DEVIATES IN A SECUENCE. 
FUNCTION RANI(IDUM) 
INTEGER IDUM,IA,IM,IQ,IR,NTAB,NDIV 
REAL RAN1,AM,EPS,RNMX 
PARAMETER(IA=168 07,IM=21474 83647,AM=1./IM,IQ=127773,IR=2 83 6,NTAB=32,NDI 
V=1+(IM-1)/NTAB,EPS=1.2E-7,RNMX=1.-EPS) 
INTEGER J,K,IV(NTAB),IY 
SAVE IV,IY 
DATA IV /NTAB*0/, IY/0/ 
IF(IDUM.LE.O.OR.IY.EQ.O) THEN 
IDUM=MAX(-IDUM,1) 
DO J=NTAB+8,1,-1 

K=IDUM/IQ 
IDUM=IA*(IDUM-K*IQ)-IR*K 
IF(IDUM.LT.O) IDUM=IDUM+IM 
IF(J.LE.NTAB) IV(J)=IDUM 



END DO 
IY=IV(1) 
END IF 
K=IDUM/IQ 
IDUM=IA*(IDUM-K*IQ)-IR*K 
IF(IDUM.LT.O) IDUM=IDUM+IM 
J=1+IY/NDIV 
IY=IV(J) 
IV(J)=IDUM 
RAN1=MIN(AM*IY,RNMX) 
RETURN 
END FUNCTION RANI 
! RANDOM GENERATOR NUMBER USING A NORMAL (0,1) DISTRIBUTION 
i 

SUBROUTINE RANDOM(IDUM,GASDEV) 
INTEGER IDUM, ISET 
REAL GASDEV,FAC,GSET,RSQ,VI,V2 
DATA ISET/0/ 
SAVE ISET,GSET 
IF (ISET.EQ.O)THEN 
1 V1=2.0D0*RAN1(IDUM)-1.0D0 

V2=2.0D0*RAN1(IDUM)-1.0D0 
RSQ=V1**2+V2**2 
IF(RSQ.GE.l.ODO.OR.RSQ.EQ.O.ODO) GOTO 1 
FAC=SQRT(-2.0D0*LOG(RSQ)/RSQ) 
GSET=V1*FAC 
GASDEV=V2*FAC 
ISET=1 

ELSE 
GASDEV=GSET 
ISET=0 

END IF 
RETURN 
END SUBROUTINE RANDOM 
! USING THE RANDOM VALUE GENERATED BY RANI, THIS FUNCTION 
! RECALCULATE THE LIMITS OF THE UNIFORM DISTRIBUTION 
! FORM (0,1) TO (RRMIN,RRMAX) 

DOUBLE PRECISION FUNCTION LIMITATE(RRMIN,RRMAX,X) 
DOUBLE PRECISION RRMIN,RRMAX,X 

LIMITATE=RRMIN+(RRMAX-RRMIN)*X 
END FUNCTION LIMITATE 
! WALL COLLISION ALGORITHM 
! COMPUTE VALUE OF RCRIT GIVEN A VALUE OF TITC AND TITB 
! IT WILL BE USED TO COMPUTE RANDOM REBOUND ANGLE 

DOUBLE PRECISION FUNCTION CRIT_R(TITC,TITB) 
DOUBLE PRECISION TITC,TITB 
IF (TITB.GT.0.0D0) THEN 

CRIT_R=0.5D0*(COS(TITB)-TAN(TITC)*SIN(TITB)) 
ELSE 

CRIT_R=0.5D0*(COS(ABS(TITB))+TAN(TITC)*SIN(ABS(TITB))) 
END IF 
END FUNCTION CRIT_R 
! TITAB CALCULATION USING R VALUE 
i 

DOUBLE PRECISION FUNCTION CAL TITAB(TET,RN) 
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DOUBLE PRECISION TET,XK,DIFF,EXPR,NEW_XK 
DOUBLE PRECISION RN 
XK=PI/6.0D0 
DIFF=1000.0D0 
DO 100 WHILE(DIFF.GT.0.001D0) 
NEW_XK=XK-(RN-0.5D0*SIN(XK)+0.5D0*COS(XK)*TAN(TET))/ 
0.5D0*SIN(XK)*TAN(TET)) 
DIFF=ABS(NEW_XK-XK) 
XK=NEW_XK 
100 END DO 
CAL_TITAB=PI*(0.5D0)-XK 
END FUNCTION CAL TITAB 

-0.5D0*COS(XK) 

! CREATE MATRIX AND INVERSE MATRIX 
SUBROUTINE CREATE_M(M,INV_M,B,A) 
DOUBLE PRECISION,DIMENSION (3,3)::M,INV_M 
DOUBLE PRECISION A,B 
M ( l , l ) 
M ( l , 2 ) 
M ( l , 3 ) 
M ( 2 , l ) 
M ( 2 , 2 ) 
M ( 2 , 3 ) 
M ( 3 , l ) 
M ( 3 , 2 ) 
M ( 3 , 3 ) 
INV_M 
INV_M 
INV_M 
INV_M 
INV_M 
INV_M 
INV_M 
INV_M 
INV_M 

=COS(A)*COS(B) 
= - C O S ( B ) * S I N ( A ) 
= - S I N ( B ) 
=SIN(A) 
=COS (A) 
= 0 . 0 D 0 
=COS(A)*SIN(B) 
= - S I N ( A ) * S I N ( B ) 
=COS(B) 
l , l ) = C O S ( A ) * C O S ( B ) 
1 , 2 ) = S I N ( A ) 
l , 3 ) = C O S ( A ) * S I N ( B ) 
2 , l ) = - C O S ( B ) * S I N ( A ) 
2 , 2 ) = C O S ( A ) 
2 , 3 ) = - S I N ( A ) * S I N ( B ) 
3 , 1 ) = - S I N ( B ) 
3 , 2 ) = 0 . 0 D 0 
3 , 3 ) = C O S ( B ) 

END SUBROUTINE CREATE_M 
i 

! THIS SUBROUTINE COMPUTE X=AB (A:MATRIX, X,B:VECTOR) 
SUBROUTINE MULTIPLY(A,B, X) 
DOUBLE PRECISION,DIMENSION (3,3)::A 
DOUBLE PRECISION,DIMENSION (3)::X,B 
X(1)=A(1,1)*B(1)+A(1,2)*B(2)+A(1,3)*B(3) 
X(2)=A(2,1)*B(1)+A(2,2)*B(2)+A(2,3)*B(3) 
X(3)=A(3,1)*B(1)+A(3,2)*B(2)+A(3,3)*B(3) 
END SUBROUTINE MULTIPLY 

! REBOUND SUBROUTINE (USING CROWE ET AL 1997) ALGORITHM 
SUBROUTINE REBOUND (VIN,WIN,VOUT,WOUT) 
DOUBLE PRECISION,DIMENSION (3)::VIN,VOUT,WIN,WOUT 
DOUBLE PRECISION VMOD,VALUE,A 
A=0.5D0 !A=PARTICLE RADIOUS 
VMOD=SQRT((VIN(1)+A*WIN(2))**2.0D0+(VIN(2)-A*WIN(1))**2.0D0) 
EX=(VIN(1)+A*WIN(2))/VMOD 
EY=(VIN(2)-A*WIN(1))/VMOD 
VALUE=-2.0D0/7.0D0/MU/(ECOL+l.0D0) 
IF(VIN(3)/VMOD.LT.VALUE) THEN 
VOUT(l)=5.0D0/7.0D0*(VIN(l)-2.0D0*A/5.0D0*WIN(2)) 
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VOUT(2)=5.0D0/7.0D0*(VIN(2)+2.0D0*A/5.0D0*WIN(1)) 
VOUT(3)=-ECOL*VIN(3) 
WOUT(l)=VOUT(2)/A 
WOUT(2)=-VOUT(l)/A 
WOUT(3)=WIN(3) 
ELSE 
VOUT(1)=VIN(1)+EX*MU*(ECOL+1.0D0)*VIN(3) 
VOUT(2)=VIN(2)+EY*MU*(ECOL+1.0D0)*VIN(3) 
VOUT(3)=-ECOL*VIN(3) 
WOUT(l)=WIN(l)-2.0D0/5.0D0/A*EY*MU*(ECOL+1.0D0)*VIN(3) 
WOUT(2)=WIN(2)+2.0D0/5.0D0/A*EX*MU*(ECOL+1.0D0)*VIN(3) 
WOUT(3)=WIN(3) 
END IF 
END SUBROUTINE REBOUND 
! WALL COLLISION SUBROUTINE 
j 

SUBROUTINE WALL_COLLISION(II) 
IMPLICIT NONE 
DOUBLE PRECISION UIN,UPPROM,DIFFER,X,CRIT_ANGLE 
DOUBLE PRECISION RMIN,RMAX,ALFAC,ALFAB 
DOUBLE PRECISION,DIMENSION (3,3)::MATRIX,INV_MATRIX 
DOUBLE PRECISION,DIMENSION (3)::V,W,VIN,VOUT,WIN,WOUT 
INTEGER KK,JJ,II,R 
CRIT_ANGLE=Pl/2-ACOS(1.0D0/3.0D0) 
TITAC=ATAN(ABS(WPM_0(II))/UPM_0(II)) 
RMIN=0.0D0 
RMAX=CRIT_R(TITAC,CRIT_ANGLE) 
X=RAN1(-JJ-II-1000) 
RR=LIMITATE(RMIN,RMAX,X) 
TITAB=CAL_TITAB(TITAC,RR) 
ALFAC=ATAN(VPM_0(II)/UPM_0(II)) 
X=RANl(-JJ-II-900) 
RR=LIMITATE(RMIN,RMAX,X) 
ALFAB=CAL_TITAB(ALFAC,RR) 
! CREATE MATRIX AND INVJMATRIX 
CALL CREATE_M(MATRIX,INV_MATRIX,TITAB,ALFAB) 
V(1)=UPM_0(II) 
V(2)=VPM_0(II) 
V(3)=WPM_0(II) 
W(1)=RPX_0(II) 
W(2)=RPY_0(II) 
W(3)=RPZ_0(II) 
!C CHANGE OF COORDINATE (ALIGN WITH PLANE OF COLISION) 
CALL MULTIPLY(INV_MATRIX,V,VIN) 
CALL MULTIPLY(INV_MATRIX,W,WIN) 
>C COMPUTE VOUT AND WOUT AFTER REBOUND 
CALL REBOUND(VIN,WIN,VOUT,WOUT) 
!C CHANGE OF COORFINATE (ALIGN WITH ORIGINAL SISTEM OF REFERENCE) 
CALL MULTIPLY(MATRIX,VOUT,V) 
CALL MULTIPLY(MATRIX,WOUT,W) 
!CC NEW VELOCITIES AFTER REBOUND 
UPM_N(II)=V(1) 
VPM_N(II)=V(2) 
WPM_N(II)=V(3) 
RPX_N(II)=W(1) 
RPY_N(II)=W(2) 
RPZ N(II)=W(3) 
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ZPM_N(II)=0.5D0 
CALL SAVE_WALL(II) 
END SUBROUTINE WALL COLLISION 

SUBROUTINE SAVE_WALL(II) 
N_REB(II)=N_REB(II)+1 
MATRIX_INDEX(11,1)=MATRIX_INDEX(II,1)+1 
N_REB_A=N_REB(II) 
T_HIT(N_REB_A,II)=TIME 
IF (N_REB_A.GE.N_BACK+1) THEN 

TBEGIN(II)=T_HIT(N_REB_A 
END IF 
WRITE(IUNIT+II+2000, 101) 
JUMPH(II)=0.0D0 
JUMPL(II)=0.0D0 
JUMPINI(II)=XPM_N(II) 
101 FORMAT(' ', 110, ' 
END SUBROUTINE SAVE_WALL 
! COLLISION ALGORITH GIBEN BY 
JTHIS ALG 
!JJ-1 AND 

N_BACK,II) !TIME FOR BASSET COMP 

II, TIME,JUMPH(II)-0.5D0, JUMPL(II) 

F24.12, 2( F24.20, ) ) 

YAMAMOTO ET AL. 2001 
SHOULD GIVE A NEW VALUE OF THE VELOCITIES OF THE PARTICLE AT 
A NEW POSITION FOR THE PARTICLES AT JJ 

SUBROUTINE COLLISION(I,K) 
INTEGER I,K 
DOUBLE PRECISION,DIMENSION 
DOUBLE PRECISION TITA_N 
CALL NORMAL_V(I,K,N) 
CALL IMPULSIVE_F (I,K,N,J) 
CALL CROSS(N,J,NXJ) 

(1:3)::J,N,NXJ 

UPM_N(I 
VPM_N(I 
WPM_N(I 
UPM_N(K 
VPM_N(K 
WPM_N(K 
RPX_N(I 
RPX_N(K 
RPY_N(I 
RPY_N(K 
RPZ_N(I 
RPZ_N(K 
XPM_N(I 
YPM_N(I 
ZPM_N(I 
XPM_N(K 
YPM_N(K 
ZPM N(K 

=UPM_0(I)+J(1) 
=VPM_0(I)+J(2) 
=WPM_0(I)+J(3) 
=UPM_0(K)-J(1) 
=VPM_0(K)-J(2) 
=WPM_0(K)-J(3) 
=RPX O(I)+1.25D0*NXJ(l) 
=RPX_0(K)+1 
=RPY_0(I)+1 
=RPY_0(K)+1 
=RPZ_0(I)+1 
=RPZ_0(K)+1 
=XPM_0(I)+UPM 
=YPM 0(1)+VPM 

25D0*NXJ(1) 
25D0*NXJ(2) 
25D0*NXJ(2) 
25D0*NXJ(3) 
25D0*NXJ(3) 
N(I)*DT 
N(I)*DT 

=ZPM_0(I)+WPM_N(I)*DT 
=XPM_0(K)+UPM_N(K)*DT 
=YPM_0(K)+VPM_N(K)*DT 
=ZPM_0(K)+WPM_N(K)*DT 

CALL SAVE_COLLISION(I,K) 
END SUBROUTINE COLLISION 
! SUBROUTINE NORMAL CALCULATE THE UNIT VECTOR FROM THE CENTER OF 
! PARTICLE I TO THE CENTER OF PARTICLE K. THIS SUBROUTINE ALSO 
! PROVIDES THE ANGLE WITH RESPECT TO THE HORIZONTAL OF THIS VECTOR 
! NORMAL VECTOR HAS THREE COMPONENTS (X,Y,Z) 

SUBROUTINE NORMAL_V(I,K,N) 
INTEGER I,K 
DOUBLE PRECISION,DIMENSION (1:3)::N 
DOUBLE PRECISION D X,D Z,MOD N 
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D_X=XPM_0(K)-XPM_0(I) 
D_Y=YPM_0(K)-YPM_0(I) 
D_Z=ZPM_0(K)-ZPM_0(I) 
MOD_N=SQRT(D_X**2.0D0+D_Y**2.0D0+D_Z**2.ODO) 
IF (MOD_N.NE.0.ODO) THEN 

N(l)=D_X/MOD_N 
N(2)=D_Y/MOD_N 
N(3)=D_Z/MOD_N 

ELSE 
N(l)=O.ODO 
N(2)=0.0D0 
N(3)=0.0D0 

END IF 
END SUBROUTINE NORMAL_V 
[SUBROUTINE IMPULSIVE GIVES THE IMPULSIVE FORCE EXCERTED ON PARTICLE 
! PER UNIT MASS. THE VECTOR HAS THREE COMPONENTS. 
i 

SUBROUTINE IMPULSIVE_F(I,K,N, J) 
IMPLICIT NONE 
INTEGER I,K,L 
DOUBLE PRECISION,DIMENSION (1: 3) : :J,G,N,GFC,T 
DOUBLE PRECISION,DIMENSION (1:3)::ROT_I,ROT_K,CROSS_I,CROSS_K 
DOUBLE PRECISION JN,JT,GFC_MOD,TITA_N,G_DOT_N,SLIDE 
G(1)=UPM_N(I)-UPM_N(K) 
G(2)=VPM_N(I)-VPM_N(K) 
G(3)=WPM_N(I)-WPM_N(K) 
ROT_I(1)=RPX_N(I) 
ROT_K(l)=RPX_N(K) 
ROT_I(2)=RPY_N(I) 
ROT_K(2)=RPY_N(K) 
ROT_I(3)=RPZ_N(I) 
ROT_K(3)=RPZ_N(K) 
CALL CROSS(ROT_I,N,CROSS_I) 
CALL CROSS(ROT_K,N,CROSS_K) 
G_DOT_N=DOT_PRODUCT(N,G) 
DO 200 L=l,3 
GFC(L)=G(L)-G_DOT_N*N(L)+0.5*CROSS_I(L)+0.5D0*CROSS_K(L) 
200 END DO 
GFC_MOD=SQRT(GFC(l)**2.0D0+GFC(2)**2.0D0+GFC(3)**2.ODO) 
! CHECK IF PARTICLE SLIDES (SLIDE > 0) 
IF(GFC_MOD.NE.0.0D0) THEN 

SLIDE=2.0D0/7.0D0/MU/(1.0D0+ECOL)-G_DOT_N/GFC_MOD 
ELSE 

SLIDE=2.0D0/7.0D0/MU/(1.0D0+ECOL) 
END IF 
IF (SLIDE.GT.0.ODO) THEN 
! PARTICLE SLIDES 

JN=-(1.0D0+ECOL)*0.5D0*G_DOT_N 
JT=MU*JN 

ELSE 
! PARTICLE DOESN'T SLIDES 

JN=-(1.0D0+ECOL)*0.5D0*G_DOT_N 
JT=-1.0D0/7.0D0*GFC_MOD 

END IF 
! CALCULATE TANGENTIAL VECTOR T & J 
DO 300 L=l,3 

IF(GFC MOD.NE.0.0D0) THEN 
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T(L)=GFC(L)/GFC_MOD 
ELSE 

T(L)=O.ODO 
END IF 
J (L) = JN*N (L) +JT*T (L) 

300 END DO 
END SUBROUTINE IMPULSIVE_F 

SUBROUTINE SAVE_COLLISION(I, K) 
MATRIX_INDEX(1,2)=MATRIX_INDEX(I,2)+1 
MATRIX_INDEX(K,2)=MATRIX_INDEX(K,2)+1 
WRITE(IUNIT+I+1000)I,K,TIME,UPM_N(I),UPM_0(I),VPM_N(I)VPM_0(I),WPM_N(I) 
,WPM_0(I),RPX_N(I),RPX_0(I),RPY_N(I),RPY_0(I),RPZ_N(I),RPZ_0(I) 
WRITE(IUNIT+K+1000)I,K,TIME,UPM_N(K),UPM_0(K),VPM_N(K),VPM_0(K),WPM_N(K 
),WPM_0(K),RPX_N(K),RPX_0(K),RPY_N(K),RPY_0(K),RPZ_N(K),RPZ_0(K) 
WRITE(90,3 02)I,K,TIME 
301 FORMAT(' ', 110, ' ', 110,' ', F40.24,12( ' ', F40.12, ' ') ) 
302 FORMAT(' ', 110, ' ', 110,' ', F40.12 ) 
END SUBROUTINE SAVE_COLLISION 

! LOAD GRID FILES IN X,Y,Z ARRAY 
SUBROUTINE LOAD_GRID 
REAL*4, ALLOCATABLE, DIMENSION(:)::AUX 
OPEN (301,FILE='XMCOORD', FORM="UNFORMATTED") 
OPEN (302,FILE='ZMCOORD', FORM="UNFORMATTED") 
OPEN (303,FILE='YMCOORD', FORM="UNFORMATTED") 
ALLOCATE (AUX(NX)) 
READ (301) AUX iASSOCIATED TO IG=1..NX 
X=AUX/D_D0 
DEALLOCATE (AUX) 
ALLOCATE (AUX(NY)) 
READ (302) AUX !ASSOCIATED TO JG=1..NY 
Y=AUX/D_D0 
DEALLOCATE (AUX) 
ALLOCATE (AUX(NZ)) 
READ (303) AUX 1ASSOCIATED TO KG=1..NZ 
Z=AUX/D_D0 
DEALLOCATE (AUX) 
CLOSE(301) 
CLOSE(302) 
CLOSE(303) 
X_MAX=X(NX-1) ! DEFINE MAXIMUN SIMULATION LENGTH 
X_MIN=X(1) 
Y_MAX=Y(NY-1) 
Y_MIN=Y(1) 
Z_MAX=Z(NZ-1) 
END SUBROUTINE LOAD_GRID 
! LOAD_VELOCITY FIELD MATRIX U,V,W 
SUBROUTINE LOAD_VELOCITY(T,TIME_V,TIME_VP1) 
REAL*4, ALLOCATABLE, DIMENSION(:,:,:)::AUX,AUX1 
DOUBLE PRECISION T,TIME_V,TIME_VP1 
INTEGER N_TIME,TVMAX 
JUNIT=10 
! TRANSFORM TIME USED IN SALTATE TO TIME SIMULATED BY V.CALO 
TIME_V=T/US_UM*D_D0*2.0D0 ! THE FILE NAME REPRESENTS Bl/0.5 DT 
TIME_VP1=TIME_V+1 ! THE FILE NAME REPRESENTS Bl/0.5 DT 
TVMAX=3 00 !MAX OF V CALO SIMULATION FILES 



T_V=INT(TIME_V) 
T_VP1=T_V+1 
IF (T_VP1.GE.TVMAX) T_VP1=0 
IF (T_V.EQ.TVMAX) THEN 

T_V=0 
T_VP1=1 

END IF 
IF (T_V.GE.TVMAX) THEN 

N_TIME=FLOOR(TIME_V/TVMAX) 
T_V=T_V-N_TIME*TVMAX+1 ! CONTINUOUS TIME DOMAIN 
T_VP1=T_V+1 

END IF 
IF(T_VP1.GE.TVMAX) T_VP1=T_VP1-TVMAX 
IF(T_V.EQ.TVMAX) T_V=0 
IF(T_V.EQ.TVMAX+1) T_V=1 
IF(T_V.EQ.TVMAX+2) T_V=2 
IF(T_VP1.EQ.TVMAX) T_VP1=0 
IF(T_VP1.EQ.TVMAX+1) T_VP1=1 
IF(T_VPl.EQ.TVMAX+2) T_VP1=2 
IF (INT(T_V).EQ.29.0R.INT(T_V).EQ.198) T_V=T_V+1 
IF (INT(T_VP1).EQ.29.OR.INT(T_VP1).EQ.198) T_VP1=T_VP1+1 
C1='0' 
C2=CHAR(INT(T_V/l00)+48) 
C3=CHAR(INT{INT((T_V)-INT(T_V/100)*100)/10)+48) 
C4=CHAR(INT(T_V)-INT(T_V/100)*100-INT(INT((T_V)-
INT(T_V/100)*100)/lO)*10+48) 
B1=C1//C2//C3//C4 
WRITE(*,*)'PROCESS TIME: •,Bl 
OPEN (JUNIT+6,CONVERT='BIG_ENDIAN',FILE='DATA.BLOCK.U.'//Bl, 
FORM="UNFORMATTED") 
OPEN (JUNIT+7,CONVERT='BIG_ENDIAN',FILE='DATA.BLOCK.V.'//Bl, 
FORM="UNFORMATTED") 
OPEN (JUNIT+8,CONVERT='BIG_ENDIAN',FILE='DATA.BLOCK.W.'//Bl, 
FORM="UNFORMATTED") 
ALLOCATE(AUX(NX,NZ,NY)) 
READ (JUNIT+6) AUX 
U=AUX/US_UM ! U VELOCITY 
READ (JUNIT+7) AUX 
V=AUX/US_UM ! V VELOCITY 
READ (JUNIT+8) AUX 
W=AUX/US_UM ! W VELOCITY 
CLOSE(JUNIT+6) 
CLOSE(JUNIT+7) 
CLOSE(JUNIT+8) 
DEALLOCATE (AUX) 
! NEW TIME STEP (LINEAR INTERPOLATION) 
C2=CHAR(INT(T_VPl/l00)+48) 
C3=CHAR(INT(INT((T_VP1)-INT(T_VPl/lOO)*100)/l0)+48) 
C4=CHAR(INT(T_VP1)-INT(T_VPl/lOO)*100-INT(INT((T_VP1)-
INT(T_VP1/100)*100)/10)*10+48) 
B1=C1//C2//C3//C4 
WRITE(*,*)'PROCESS TIME: ' , Bl 
OPEN (JUNIT+26,CONVERT='BIG_ENDIAN',FILE='DATA.BLOCK.U.'//Bl, 
FORM="UNFORMATTED") 
OPEN (JUNIT+27,CONVERT='BIG_ENDIAN',FILE='DATA.BLOCK.V.'//Bl, 
FORM="UNFORMATTED") 
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OPEN (JUNIT+28,CONVERT='BIG_ENDIAN',FILE 
FORM="UNFORMATTED") 
ALLOCATE(AUX(NX,NZ,NY)) 
READ (JUNIT+2 6) AUX 
U_F=AUX/US_UM 
READ (JUNIT+2 7) AUX 
V_F=AUX/US_UM 
READ (JUNIT+28) AUX 
W_F=AUX/US_UM 
CLOSE(JUNIT+26) 
CLOSE(JUNIT+27) 
CLOSE(JUNIT+28) 
DEALLOCATE(AUX) 
TIME_V=TIME_V/(D_D0/US_UM*2.0D0) 
TIME_VP1=TIME_VP1/(D_D0/US_UM*2.0D0) 
END SUBROUTINE LOAD_VELOCITY 

SUBROUTINE LOCATE(II,IG,KG,JG) 
DOUBLE PRECISION XP,YP,ZP,XINI,YINI 
INTEGER N_X,N_Y 
IG=1 !PARTICLES LOCATED ONLY IN THE TURBULENT REGION 
JG=1 
KG=1 
XP=XPM_0(II) 
YP=YPM_0(II) 
ZP=ZPM_0(II) 
XINI=X(IG) 
YINI=Y(JG) 
IF (XP.GT.X_MAX) THEN 

N_X=FLOOR(XP/(X_MAX-XINI)) 
XP=XP-N_X*(X_MAX-XINI) ! CONTINUOUS GRID DOMAIN IN X 

END IF 
IF (YP.GT.Y_MAX) THEN 

N_Y=FLOOR(YP/(Y_MAX-YINI)) 
YP=YP-N_Y*(Y_MAX-YINI) ! CONTINUOUS GRID DOMAIN IN Y 

END IF 
IF (ZP.GT.Z_MAX) ZP=Z_MAX !LIMITS VERTICAL DIRECTION 
DO 151 I=1,NX-1 

IF(XP.GE.X(I).AND.XP.LT.X(I+1)) IG=I 
151 END DO 
DO 152 J=1,NY-1 

IF(YP.GE.Y(J).AND.YP.LT.Y(J+1)) JG=J 
152 END DO 
DO 153 K=1,NZ-1 

IF(ZP.GE.Z(K).AND.ZP.LT.Z(K+1)) KG=K 
153 END DO 
END SUBROUTINE LOCATE 
! OUTPUT FILES 
i 

SUBROUTINE CREATE_FILES(IUNIT) 
DOUBLE PRECISION T_V 
OPEN(UNIT=90,STATUS=•UNKNOWN',FILE='CSTAT.DAT') 
OPEN(UNIT=300,STATUS=,UNKNOWN',FILE='RECORD_TIME.DAT') 
OPEN(999,STATUS='UNKNOWN•,FILE='MATRIX_INDEX.DAT') 
DO 560 II=1,N_PARTICLES 
T_V=II 
C1='0' 

='DATA.BLOCK.W.'//Bl, 

U VELOCITY 

V VELOCITY 

W VELOCITY 
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C2=CHAR(INT(T_V/100)+48) 
C3=CHAR(INT(INT((T_V)-INT(T_V/lOO)*100)/10)+48) 
C4=CHAR(INT(T_V)-INT(T_V/lOO)*100-INT(INT((T_V)-
INT(T_V/lOO)*100)/10)*10+48) 
B1=C1//C2//C3//C4 
D1=C3//C4 
OPEN(IUNIT+II+IOOO,FORM="UNFORMATTED",STATUS='UNKNOWN',FILE='CSTAT'//Bl 
//'.DAT') 
OPEN(IUNIT+II+2000,STATUS='UNKNOWN',FILE='WSTAT'//Bl//'.DAT') 
OPEN(IUNIT+I1+3000,FORM="UNFORMATTED",STATUS='UNKNOWN',FILE='POSIC'//Bl 
//'.DAT') 
OPEN(IUNIT+II+4000,FORM="UNFORMATTED",STATUS='UNKNOWN',FILE='VELOC'//Bl 
//'.DAT') 
OPEN(IUNIT+II+5000,FORM="UNFORMATTED",STATUS='UNKNOWN',FILE='ROTAT'//Bl 
//'.DAT') 
OPEN(IUNIT+II+6000,FORM="UNFORMATTED",STATUS='UNKNOWN',FILE='FORCE'//Bl 
//'.DAT') 
OPEN(IUNIT+I1+7000,FORM="UNFORMATTED",STATUS='UNKNOWN',FILE='FLU_V_Q'// 
Bl//'.DAT') 
560 END DO 
END SUBROUTINE CREATE_FILES 

SUBROUTINE OUTPUT(T,UNIT) 
DOUBLE PRECISION T_V,T 
INTEGER UNIT 
DO 570 II=1,N_PARTICLES 

CALL LOCATE(II,IG,KG,JG) 
CALL FORCES(II) 
WRITE(IUNIT+II+3000) II, T, XPM_N(II) , YPM_N(II), ZPM_N(II) 
WRITE(IUNIT+II+4000) II, T, UPM_N(II) , VPM_N(II), WPM_N(II) 
WRITE(IUNIT+II+5000) II, T, RPX_N(II), RPY_N(II), RPZ_N(II) 
WRITE(IUNIT+II+6000) II, T, UFM(II) , VFM(II), WFM(II), Q(II) 
WRITE(IUNIT+II+7000) II, T, DRAGF,VMASF,SWGHF,BASSF,LIFTF,MAGNF 

57 0 END DO 
END SUBROUTINE OUTPUT 

SUBROUTINE CLOSE_FILES(IUNIT) 
DOUBLE PRECISION T_V 
DO 58 0 II=1,N_PARTICLES 
T_V=II 
C1='0' 
C2=CHAR(INT(T_V/l00)+48) 
C3=CHAR(INT(INT((T_V)-INT(T_V/100)*100)/10)+48) 
C4=CHAR(INT(T_V)-INT(T_V/100)*100-INT(INT((T_V)-
INT(T_V/100)*100)/10)*10+48) 
B1=C1//C2//C3//C4 
CLOSE(IUNIT+II+2000) 
CLOSE(IUNIT+II+3000) 
CLOSE(IUNIT+II+4000) 
CLOSE(IUNIT+II+5000) 
CLOSE(IUNIT+II+6000) 
CLOSE(IUNIT+II+7000) 
580 END DO 
END SUBROUTINE CLOSE FILES 

SUBROUTINE FORCES(II) 
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DRAGF=DR*(BETA*URM(II)*SQRT((UPM_N(II)-UFM(II))**2.0D0+(VPM_N(II)-
VFM(II))**2.0D0+(WPM_N(II)-WFM(II))**2.ODO)) 
VMASF=(EPS*DUF(II)*WPM_N(II))*VM 
SWGHF=SQRT(GU**2.0D0+GW**2.ODO)*SW 
BASSF=KAPA*SQRT(BUINTE**2.0D0+BVINTE**2.0D0+BWINTE**2.ODO)*BS 
LIFTF=(DELTA*(URMT2(II)-URMB2(II)))*LF 
MAGNF=(0.75D0*ALFA*URM(II)*(S-0.5D0*DUF(II))*MG) 
END SUBROUTINE FORCES 
! THIS ROUTINE CALCULATE THE NATURAL LOGARITM OF THE 
! GAMMA FUNCTION FOR A DOUBLE PRECISION ARGUMENT X 
DOUBLE PRECISION FUNCTION DGAMMALN(XX) 
INTEGER J 
DOUBLE PRECISION X,SER,STP,TMP,XX,Y,COF(6) 
SAVE COF STP 
DATA COF,STP/76.18009172947146D0,-86.50532032941677D0, 
24.01409824083091D0,-1.231739572450155D0,0.120865097386S17 9D-2 
, -.53 9523 93 84 953D-5,2.5066282746310005D0/ 
X=XX 
Y=X 
TMP=X+5.5D0 
TMP=(X+0.5D0)*LOG(TMP)-TMP 
SER=1.000000000190015D0 
DO 11 J=l,6 

Y=Y+1.0D0 
SER=SER+COF(J)/Y 

11 END DO 
DGAMMALN=TMP+LOG(STP*SER/X) 
RETURN 
END FUNCTION DGAMMALN 
! CROSS CALCULATE THE CROSS PRODUCT BETWEEN VECTOR A AND B 
! THE RESULTANT VECTOR IS GIVEN BY AXB 

SUBROUTINE CROSS(A,B,AXB) 
DOUBLE PRECISION,DIMENSION (1:3)::A,B,AXB 
INTEGER L 
AXB(1)=A(2)*B(3)-A(3)*B(2) 
AXB(2)=-(A(l)*B(3)-A(3)*B(1)) 
AXB(3)=A(1)*B(2)-A(2)*B(1) 
END SUBROUTINE CROSS 

SUBROUTINE LIB_MEMORY(MINT) 
DOUBLE PRECISION MINT 
TYPE (NODE), POINTER ::BEGIN_LIST_AUX,AUX 
NULLIFY(N_NODE) 
N_NODE => BEGIN_LIST ! MAKE CURRENT POINT TO HEAD OF LIST 
K=0 
DO 100 WHILE(N_NODE%T.GE.MINT.AND.K.LT.NODE_NUMBER) 
IF (.NOT. ASSOCIATED(N_NODE)) EXIT ! EXIT IF NULL POINTER 
AUX=>N_NODE 
N_NODE => N_NODE%NEXT ! JUMP TO NEXT POINTER 
K=K+1 
100 END DO 
BEGIN_LIST_AUX=>N_NODE N_NODE => BEGIN_LIST_AUX 
NULLIFY(AUX%NEXT) 
DO 200 
IF (.NOT. ASSOCIATED (NJSTODE) ) EXIT ! EXIT IF NULL POINTER 
BEGIN LIST AUX => N NODE%NEXT ! MAKE LIST POINT TO NEXT NODE OF HEAD 
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DEALLOCATE(N_NODE) ! DEALLOCATE CURRENT HEAD NODE 
NULLIFY(N_NODE) 
NODE_NUMBER=NODE_NUMBER-l !REDUCE NUMBER OF NODES 
N_NODE => BEGIN_LIST_AUX ! MAKE CURRENT POINT TO NEW HEAD 
200 END DO 
END SUBROUTINE LIB MEMORY 

END MODULE VELOCITY 
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APPENDIX B 

ANALYSIS OF THE SEMIDERIVATIVE METHOD TO 

CALCULATE THE BASSET INTEGRAL 

A Lagrangian model to describe the trajectory of a particle surrounded by fluid 

requires the evaluation of the forces acting around the object. Associated with the 

unsteadiness of the drag force, the Basset force is regarded as a "history" force, that 

become increasingly important for relatively small particles (Nino and Garcia, 1998; 

Mordant and Pinton, 2000; Armenio and Fiorotto, 2001; Lukerchenko, 2006). The ith 

component of this force is calculated as follows: 

F„ , . = - J ^ f—=i= — (ur-u W (B-l) 
Basse" dp V n l4f^tdtKfi p,F K } 

where a is the particle radius, pf and ju denotes the fluid density and dynamic viscosity 

respectively, uf and up represent the fluid and particle velocity, T represents the actual 

time step, t is an integration dummy variable. 

It is easy to see why the Basset term has been usually neglected in the estimation 

of the forces acting on a particle; it requires to storage the temporal variation of the 

relative particle velocity with respect to the fluid, requiring a large amount of computer 

memory depending of the integration time considered. Also, the Basset force presents 

additional difficulties because the denominator in the integrand vanishes when the upper 
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integration limit is enforced. To circumvent this problem, Brush et al. (1964) suggested a 

method which consists in dividing this integral in two terms, as follows: 

duri du,{ 

,— i du „ du . 
(B-2) Nt-r i <Jt-T 

dun du ; 
u, — — 

. dxj dt 

with St denoting the time step employed in the numerical solution. Summation on j is 

implied in (A-2). This approximation was used by Nino and Garcia (1998) to calculate 

the Basset term for sediment particles moving close to the bed of channel. 

As it was mentioned before, the Basset force requires a lot of computational 

resources if the integration time is large, which is common for numerical simulation of 

several particles moving as bedload. Therefore, any improvement in the amount of time 

required to compute the Basset force would benefit the performance of any numerical 

simulation. 

A different approach was presented by Tatom (1988) to approximate the Basset 

term as follows: 

Uu ^ dur ^-0.5 

J - * _ A = l ( I ) — i # i (B-3) 
I yjt-T \2J dt 

where T(-) represents the gamma function (Abramowitz and Stegun 1970). The right 

hand side of Eq. (A-3) includes a semi-derivative, which belongs to the so-called 

fractional mathematics. This theory offers a generalized view of derivatives and integrals 

for which the orders are not necessarily integers (see Oldham and Spanier 1974, 

Nishimoto 1991). 
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For a general function ur(t), the semi-derivative can be calculated using a series, 

as proposed by Oldham and Spanier (1974, page 30): 

where q is an arbitrary value (equal to -0.5 in the semi-derivative above). 

Tatom did not provide further analysis with respect to the accuracy or the 

convergence of this method. In this appendix, both issues are addressed in order to 

compare the performance of this method (called from now on the semi-derivative 

method) with previously used method to solve the Basset integral. 

The accuracy of the semi-derivative method was tested using an arbitrary 

function, namely, ur (t) = t3, /3 . Using this function, the Basset integral can be calculated 

both numerically and analytically. The analytical solution for this expression is given by: 

df(t) dt3 

\dL=dt J\-4^=dt =^T25 (B-5) 
t-JT-t jjf-t 15 

For an arbitrary value of T equal to 100, the Basset integral presents a value equal 

to 106,667. This value was considered as a reference value, for error calculations. The 

numerical approximation of the Basset integral using the semi-derivative method depends 

on the number of terms (N) used in the sum in (B-4). I defined the relative error as the 

relative difference between the numerical integration and the value obtained from the 

analytical expression. The results are presented in Table B-l. 
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Table B-l: Error associated with the semi-derivative method versus N, using a test function that has 

analytical solution. 

N 

Analitical Value 
5 

50 
500 

1000 
5000 

50000 

Semi-derivative 
Method 

106,667 
120,163 
108,002 
106,800 
106,733 
106,680 
106,668 

Error 
(%) 

-

13.32 
1.86 

0.07 
0.07 
0.06 
0.06 

The proposed method can achieve a 2% error (as compared with the analytical 

solution) with less than 50 points. Selecting 500 or 1,000 points reduces the error 

drastically up to 0.1%, what we considered to be as almost "exact." 

Considering that the Basset integral is an improper integral, it is important to 

compare the performance of the semi-derivative method with known algorithms used to 

calculate improper integrals. One of these algorithms, the Euler-MacLaurin summation 

for improper integrals formula, taken verbatim from Press et al/ (1992) is used to 

compare with the semi-derivative method. In the comparison, the test function 

u
r(t) =t3/3 and the same number of terms used in the quadrature was used for both 

cases. The results are presented in Table B-2. 

Table B-2: Comparison of the method with the semi-derivative approach and the Euler-MacLaurin 
summation formula for an integration which has analytical solution. 

N 

1 
3 
9 

Semi-derivative 
Method 

177245 
129337 
114125 

Euler_MacLaurin 
Method 

69501 
86059 
94939 

Error 
Semiderivative 

(%) 

66.17 
21.25 

6.99 

Error Euler-
MacLaurin 

(%) 

34.84 
19.32 
10.99 
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N 

27 
81 

243 
729 

2187 
6561 

19683 
59049 

177147 
531441 

1594323 

Semi-derivative 
Method 

109141 
107490 
106941 
106758 
106697 
106677 
106670 
106668 
106667 
106667 
106667 

EulerMacLaurin 
Method 

99929 
102783 
104426 
105373 
105920 
106236 
106418 
106523 
106584 
106619 
106639 

Error 
Semiderivative 

(%) 

2.32 
0.77 
0.26 
0.09 
0.03 
0.01 
0.00 
0.00 
0.00 
0.00 
0.00 

Error Euler
MacLaurin 

(%) 

6.32 
3.64 
2.10 
1.21 

0.70 
0.40 
0.23 
0.13 
0.08 
0.04 
0.03 

It is clearly from Table B-2 that the semi-derivative approach provides smaller 

values of the error for the same number of terms used in both methods, indicating a much 

faster convergence of the semi-derivative approach than the Euler-MacLaurin summation 

formula. For instance, the error for the Euler-MacLaurin formula at about 1,000 terms is 

of the order of 1%, more than 10 times larger than the error in the semi-derivative 

approach for the same number of terms. Notice also that for a very large number of terms, 

Euler-MacLaurin still has error, while the semi-derivative approach does not. This 

performs better than the Euler-MacLaurin summation formula. 

Considering that in reality particles moving along the bed of a channel would 

experience a turbulent velocity field (not as smooth as the test function), a second test 

was performed using a "more turbulent looking velocity field". To that end, it was 

considered the following derivative of the relative velocity: dujdt = cos(Y) and 

performed the integration of the Basset term between 0 and 7=100 TC/2. This integral has 

analytical solution in terms of Fresnel integrals, as follows: 
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cos t 

T -t 
dt = - J2 n {cost C\ (B-6) 

I f 2\ t 
where C\t) = jcos —— dz and C\t) = [sin n z 

2\ 

dz. These functions are tabulated 

in the book by Abramowitz and Stegun (1970). For the above value of T, the integration 

gives the value 1.253060201. The semi-derivative approach and the Euler-MacLaurin 

summation formula give the errors for different numbers of terms depicted in Table B-3. 

Again, we see that the semi-derivative approach does a better job in converging to the 

right number than the Euler-MacLaurin summation formula. 

Table B-3: Comparison of the method with the semi-derivative approach and the Euler-MacLaurin 
summation formula for an integration of a "more turbulent looking velocity field" which has 

analytical solution. 

N 

1 
3 
9 
27 
81 
243 
729 

2187 

6561 

19683 

59049 

177147 

531441 

1594323 

Semi-derivative 
Method 

22.21441469079 

7.21434279466 

5.18811465433 

4.66783568853 

1.75815554296 

1.42522996020 

1.31140473958 

1.27263337040 

1.25959918803 

1.25524151190 

1.25378748899 

1.25330265107 

1.25314102020 

1.25308714121 

Euler-Mac Laurin 
Method 

1.49668211888 

-1.79915200491 

-2.92933905411 

0.36399574478 

0.76393412206 

0.97209483967 

1.09093574870 

1.15946342479 

1.19902244847 

1.22186151231 

1.23504760541 

1.24266057556 

1.24705587523 

1.24959343185 

Error 
Semiderivative 

(%) 

1672.813 

475.738 

314.036 

272.515 

40.309 

13.740 

4.656 

1.562 

0.522 

0.174 

0.058 

0.019 

0.006 

0.002 

Error Euler-

Mac Laurin 

(%) 

19.442 

243.581 

333.775 

70.951 

39.035 

22.422 

12.938 

7.469 

4.312 

2.490 

1.437 

0.830 

0.479 

0.277 
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It is also necessary to compare the performance of the semi-derivative method in 

relation to the Brush et al. method to solve the Basset integral. For the Brush et al. 

method, a Simpson quadrature was used to calculate the integral. In this case, the test 

function should represent in a more realistic way the type of motion that affect a particle 

moving in a boundary layer type of flow. The main interest of this project is with 

particles moving as bedload, where particles describe a saltating trajectory. Using the 

computational code described in Chapter 3, the results obtained for a single particle jump 

considering Rp=53 (which corresponds to a small particle size) and T, =0.056, shows 

that the particle velocity in the wall normal component could be describe as a parabolic 

function of the time (See Figure B-l). 

3 
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2 
1.5 

1 
0.5 

0 
0.5 
-1 

1.5 
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-

, 
0.2 
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t u»/dp 

, 
1.2 1 

Figure B-l: Left: Single particle trajectory, using the particle diameter as a length scale. Right: 
Single particle velocity in the wall normal direction, using the shear velocity u* as a velocity scale. 

Rp=53, T*=0.056. 

For this specific jump, the particle velocity in the wall normal direction can be 

estimated using the following second order function of the time (with a correlation 

function equal to 0.997): 

w (t) = 1.875289056t2 -5.28176532It + 2.25364967 (B-7) 

dur dwp(t) 

dt dt 
= 3.75058112t - 5.281765321 = At-B (B-8) 
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The value of the Basset integral just before the particle hits the wall can be 

analytical estimated as: 

y ^ L * = \ A t -B)^L= = -2~,lT~l[{2T + t)A-3B}T 

dt 

(B-9) 

Considering a collision time equal to 1.188, the value of the Basset integral is -

5.038438204. The semi-derivative approach and the Brush et al. method give the errors 

for different numbers of terms depicted in Table B-4. It is found that the semi-derivative 

approach does a better job in converging to the right number than the Brush et al formula, 

with a faster convergence rate. For instance, for an error of 0.015%, the semi-derivative 

method requires only 5000 points, while the Brush et al. method requires 100,000 points 

(more than two orders of magnitude) to achieve the same precision. In this case, a 

reduction of about 20% of the computational time could be achieve by using the semi-

derivative method. 

Table B-4: Comparison of the method with the semi-derivative approach and the Brush et al. method 
for a typical particle velocity in a saltating patter which has analytical solution. 

N 

1000 
2500 
5000 
7500 

10000 
50000 

100000 

Semi-derivative 
Method 

-5.03457118 
-5.03689129 
-5.03766473 
-5.03792255 
-5.03805146 
-5.03836085 
-5.03839953 

Brush et al. 
Method 

-5.03440779 
-5.03505008 
-5.03573687 
-5.03612092 
-5.03637346 
-5.03742149 
-5.03770352 

Error Semi-
derivative (%) 

0.077 
0.031 
0.015 
0.010 
0.008 
0.002 
0.001 

Error Brush 
et al. (%) 

0.080 
0.067 
0.054 
0.046 
0.041 
0.020 
0.015 
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Finally, it is necessary to compare the computations of the Basset force in the 

code developed to track particles, using both the semi-derivative and Brush et al. 

methods. In this case, the Basset force is calculated in each time step. The results were 

obtained for a single particle jump considering Rp=53 (which corresponds to a small 

particle size) and r, =0.056. The results of Table B-5 indicate that the percentage of 

difference between both approximations is less than 3%, which indicates a very good 

agreement. In addition to providing a close estimate to the Basset force, this methodology 

is accurate and it converges faster then Euler-Mac Laurin and Brush methods to calculate 

the Basset integral. It was also found that the semi-derivative method reduces the 

computational time by 20% as compared with Brush et al.'s method, depending of the 

desired precision. 

Table B-5: Comparison of the method with the semi-derivative approach and the Brush et al. method 
for a typical particle jump. 

N 

100 
500 

1000 
5000 

10000 
50000 

Brush's 

Basset Integral 
X Component 

-4.710 
-5.090 
-5.173 
-5.231 
-5.235 
-5.239 
-5.406 

Basset Integral 
Z Component 

-5.512 
-5.683 
-5.721 
-5.740 
-5.743 
-5.745 
-5.804 

Error X 
Component (%) 

12.88 
5.84 
4.30 
3.23 
3.15 
3.09 

_ 

Error Z 
Component (%) 

5.03 
2.08 
1.42 
1.10 
1.05 
1.02 

_ 
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APPENDIX C 

SIMULATION RESULTS FOR Rp=73 

Table C-l: Dimensionless particle jump height results. Rp =73 

RUN 

1 

2 

3 

4 

5 

6 

T*/l*C 

1 
1.5 
2 

2.5 
3 
1 

1.5 
2 

2.5 
3 
1 

1.5 
2 

2.5 
3 
1 

1.5 
2 

2.5 
3 
1 

1.5 
2 

2.5 
3 
1 

1.5 
2 

2.5 
3 

A 
0.548 +/- 0.01 
0.694 +/- 0.03 
0.819 +/- 0.05 
0.899 +/- 0.07 
0.910 +/- 0.06 
0.006 +/- 0.01 
0.008 +/- 0.02 
0.005 +/- 0.01 
0.006 +/- 0.01 
0.011 +/- 0.02 
0.004 +/- 0.01 
0.008 +/- 0.02 
0.009 +/- 0.03 
0.004 +/- 0.02 
0.003 +/- 0.01 
0.116+/- 0.06 
0.445 +/- 0.26 
0.869 +/- 0.49 
1.361 +/- 0.64 
1.834 +/- 0.75 
0.152 +/- 0.09 
0.419 +/- 0.28 
0.771 +/- 0.52 
1.280 +/- 0.66 
1.473 +/- 0.76 
0.348 +/- 0.15 
0.782 +/- 0.29 
1.275 +/- 0.45 
1.775 +/- 0.51 
2.281 +/- 0.62 

B 
0.869 +/- 0.05 
1.231 +/- 0.13 
1.525 +/- 0.19 
1.720 +/- 0.23 
1.786 +/- 0.22 
0.009 +/- 0.01 
0.017 +/- 0.03 
0.014 +/- 0.02 
0.021 +/- 0.03 
0.023 +/- 0.03 
0.008 +/- 0.01 
0.010 +/- 0.02 
0.013 +/- 0.03 
0.008 +/- 0.02 
0.021 +/- 0.04 
0.124 +/- 0.09 
0.419 +/- 0.21 
0.654 +/- 0.34 
0.919 +/- 0.37 
1.060 +/- 0.33 
0.355 +/- 0.19 
0.929 +/- 0.44 
1.553 +/- 0.75 
2.226 +/- 0.92 
2.659 +/- 1.30 
0.265 +/- 0.14 
0.662 +/- 0.34 
1.437 +/- 0.70 
2.032 +/- 0.88 
2.634 +/- 1.18 

C 
0.796 +/- 0.09 
0.953 +/- 0.12 
1.161 +/- 0.15 
1.345 +/- 0.18 
1.468 +/- 0.19 
0.002 +/- 0.00 
0.003 +/- 0.00 
0.003 +/- 0.00 
0.004 +/- 0.01 
0.003 +/- 0.01 
0.003 +/- 0.01 
0.002 +/- 0.01 
0.013 +/- 0.03 
0.004 +/- 0.01 
0.003 +/- 0.01 
0.111 +/- 0.14 
0.209 +/- 0.29 
0.314 +/- 0.49 
0.536 +/- 0.73 
0.726 +/- 0.99 
0.067 +/- 0.05 
0.406 +/- 0.23 
0.666 +/- 0.42 
1.092+/- 0.53 
1.705 +/- 0.68 
0.045 +/- 0.03 
0.206 +/- 0.15 
0.636 +/- 0.40 
1.116+/- 0.53 
1.440 +/- 0.72 

D 
0.766 +/- 0.03 
1.034 +/- 0.09 
1.306 +/- 0.14 
1.481 +/- 0.17 
1.546 +/- 0.17 
0.005 +/- 0.01 
0.007 +/- 0.01 
0.006 +/- 0.01 
0.007 +/- 0.01 
0.010 +/- 0.02 
0.007 +/- 0.02 
0.008 +/- 0.02 
0.008 +/- 0.02 
0.006 +/- 0.01 
0.010 +/- 0.03 
0.192 +/- 0.25 
0.439 +/- 0.53 
0.713 +/- 0.82 
0.779 +/- 1.09 
1.104 +/- 1.41 
0.249 +/- 0.14 
0.915 +/- 0.40 
1.413 +/- 0.62 
1.834 +/- 0.83 
2.323 +/- 0.97 
0.166 +/- 0.10 
0.661 +/- 0.33 
1.163 +/- 0.56 
1.698 +/- 0.74 
2.144 +/- 0.92 
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Table C-2: Dimensionless particle jump length results. Rp =73 

RUN 

1 

2 

3 

4 

5 

6 

T*/T*C 

1 
1.5 
2 

2.5 
3 
1 

1.5 
2 

2.5 
3 
1 

1.5 
2 

2.5 
3 
1 

1.5 
2 

2.5 
3 
1 

1.5 
2 

2.5 
3 
1 

1.5 
2 

2.5 
3 

A 
0.414 +/- 0.05 
2.178 +/- 0.38 
4.180 +/- 0.90 
5.741 +/- 1.32 
6.141 +/- 1.36 
0.262 +/- 0.28 
0.251 +/- 0.44 
0.215 +/- 0.33 
0.263 +/- 0.40 
0.487 +/- 0.60 
0.127+/- 0.22 
0.251 +/- 0.44 
0.302 +/- 0.59 
0.196+/- 0.42 
0.179+/- 0.31 
0.598 +/- 0.39 
3.431 +/- 2.22 
7.937 +/- 4.50 

13.920 +/- 6.07 
20.252 +/- 7.40 
0.942 +/- 0.66 
3.490 +/- 2.33 
7.353 +/- 4.62 

13.555 +/- 6.12 
17.278 +/- 7.33 
2.537 +/- 0.80 
6.898 +/- 1.94 

12.345 +/- 3.21 
18.375 +/- 3.93 
25.216 +/- 4.85 

B 
2.814 +/- 0.52 
7.190+/- 1.79 

11.708+/- 3.17 
15.413 +/- 4.44 
16.957 +/- 4.59 
0.280 +/- 0.28 
0.477 +/- 0.54 
0.490 +/- 0.50 
0.685 +/- 0.72 
0.749 +/- 0.86 
0.267 +/- 0.26 
0.292 +/- 0.44 
0.404 +/- 0.67 
0.288 +/- 0.54 
0.668 +/- 0.92 
0.878 +/- 0.56 
3.819+/- 1.68 
6.928 +/- 3.08 

10.706 +/- 3.75 
12.984 +/- 3.54 
1.960 +/- 1.21 
6.715 +/- 3.54 

13.286 +/- 6.03 
20.395 +/- 8.03 
26.186+/- 11.86 

1.190 +/- 0.85 
4.323 +/- 2.61 

11.574+/- 5.78 
18.371 +/- 7.65 
26.132 +/- 10.83 

C 
2.757 +/- 0.44 
5.518 +/- 1.20 
8.815 +/- 2.05 

12.119+/- 2.99 
14.558 +/- 3.61 
0.097 +/- 0.12 
0.138 +/- 0.17 
0.134 +/- 0.19 
0.188 +/- 0.24 
0.179 +/- 0.23 
0.113+/- 0.18 
0.098 +/- 0.20 
0.404 +/- 0.67 
0.167+/- 0.36 
0.131 +/- 0.27 
1.133 +/- 1.21 
2.431 +/- 2.79 
3.765 +/- 5.08 
6.542 +/- 8.02 
9.053+/- 11.20 
0.444 +/- 0.40 
3.721 +/- 2.09 
7.101 +/- 4.17 

12.351 +/- 5.39 
19.894 +/- 6.83 
0.242 +/- 0.23 
1.674 +/- 1.35 
6.331 +/- 3.94 

12.308 +/- 5.48 
17.114+/- 7.39 

D 
2.216 +/- 0.34 
5.634+/- 1.30 
9.753 +/- 2.35 

13.019 +/- 3.29 
14.561 +/- 3.69 
0.179 +/- 0.20 
0.266 +/- 0.32 
0.255 +/- 0.33 
0.317 +/- 0.37 
0.389 +/- 0.54 
0.210 +/- 0.28 
0.255 +/- 0.39 
0.265 +/- 0.44 
0.254 +/- 0.35 
0.351 +/- 0.68 
1.643 +/- 1.81 
4.103 +/- 4.31 
7.288 +/- 7.66 
8.413 +/- 10.61 

12.485 +/- 14.65 
1.590 +/- 0.99 
7.082 +/- 3.01 
0.000 +/- 5.47 

17.911 +/- 7.42 
24.139 +/- 9.26 
0.782 +/- 0.63 
4.734 +/- 2.69 
9.865 +/- 4.86 

16.215 +/- 6.72 
22.044 +/- 8.68 
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Table C-3: Dimensionless mean stream-wise particle velocity results. Rp =73 

RUN 

1 

2 

3 

4 

5 

6 

T*/T*C 

1 
1.5 
2 

2.5 
3 
1 

1.5 
2 

2.5 
3 
1 

1.5 
2 

2.5 
3 
1 

1.5 
2 

2.5 
3 
1 

1.5 
2 

2.5 
3 
1 

1.5 
2 

2.5 
3 

A 
1.461 +/- 0.68 
2.915 +/- 1.08 
3.722+/- 1.26 
4.134+/- 1.34 
4.187+/- 1.35 
4.974 +/- 0.18 
5.201 +/- 0.21 
5.341 +/- 0.22 
5.418 +/- 0.22 
5.464 +/- 0.24 
5.004 +/- 0.22 
5.325 +/- 0.27 
5.538 +/- 0.35 
5.653 +/- 0.39 
5.751 +/- 0.00 
1.657+/- 1.05 
3.640 +/- 1.84 
4.729+/- 2.15 
5.764 +/- 2.27 
6.710 +/- 2.34 
2.348 +/- 1.25 
4.008 +/- 1.76 
4.883 +/- 2.08 
6.000 +/- 2.14 
6.486 +/- 2.22 
3.862 +/- 1.02 
5.386 +/- 1.25 
6.349 +/- 1.49 
7.097 +/- 1.60 
7.429 +/- 1.62 

B 
3.671 +/- 1.13 
5.100 +/- 1.39 
5.933 +/- 1.52 
6.396 +/- 1.58 
6.548 +/- 1.61 
4.389 +/- 0.20 
4.391 +/- 0.24 
4.567 +/- 0.26 
4.723 +/- 0.28 
4.786 +/- 0.30 
4.511+/- 0.30 
4.650 +/- 0.40 
4.981 +/- 0.52 
5.058 +/- 0.52 
5.123 +/- 0.53 
4.191 +/- 0.15 
4.054 +/- 0.15 
3.976 +/- 0.16 
3.920 +/- 0.16 
3.889+/- 0.18 
2.879+/- 1.67 
4.786 +/- 2.17 
6.081 +/- 2.38 
6.840 +/- 2.57 
7.537 +/- 2.65 
2.127 +/- 1.47 
3.679 +/- 2.16 
5.420 +/- 2.51 
6.364 +/- 2.69 
7.203 +/- 2.72 

C 
4.700 +/- 0.54 
5.719 +/- 0.66 
6.430 +/- 0.75 
6.931 +/- 0.82 
7.203 +/- 0.86 
4.191 +/- 0.15 
4.054+/- 0.15 
3.976 +/- 0.16 
3.920 +/- 0.16 
3.889+/- 0.18 
4.315 +/- 0.21 
4.248 +/- 0.27 
4.234 +/- 0.33 
4.226 +/- 0.38 
4.196 +/- 0.45 
4.360 +/- 0.73 
5.383 +/- 0.93 
6.300+/- 1.19 
7.084 +/- 1.41 
7.773 +/- 1.47 
1.839 +/- 1.05 
3.849 +/- 1.59 
4.950 +/- 1.86 
5.775 +/- 2.00 
6.768 +/- 2.04 
0.161 +/- 0.55 
2.894 +/- 1.52 
4.416 +/- 1.96 
5.556 +/- 2.09 
6.203 +/- 2.22 

D 
3.416 +/- 0.94 
4.756 +/- 1.18 
5.624+/- 1.32 
6.098 +/- 1.39 
6.268 +/- 1.41 
4.298 +/- 0.17 
4.222 +/- 0.20 
4.246 +/- 0.23 
4.240 +/- 0.25 
4.310 +/- 0.27 
4.409 +/- 0.26 
4.428 +/- 0.35 
4.526 +/- 0.44 
4.590 +/- 0.52 
4.666 +/- 0.54 
4.920 +/- 0.86 
6.148 +/- 1.13 
7.136 +/- 1.33 
7.996+/- 1.53 
8.655 +/- 1.69 
2.837+/- 1.46 
4.922 +/- 1.92 
5.795 +/- 2.25 
6.633 +/- 2.37 
7.176 +/- 2.49 
1.612 +/- 1.17 
3.884+/- 1.97 
5.384 +/- 2.32 
6.113+/- 2.48 
6.797 +/- 2.54 
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APPENDIX D 

SIMULATION RESULTS FOR Rp=250 

Table D-l: Dimensionless particle jump height results. Rp =250 

RUN 

1 

2 

3 

4 

5 

6 

T*/T*C 

2 
2.5 
3 

3.5 
4 
2 

2.5 
3 

3.5 
4 
2 

2.5 
3 

3.5 
4 
2 

2.5 
3 

3.5 
4 
2 

2.5 
3 

3.5 
4 
2 

2.5 
3 

3.5 
4 

A 
1.030+/- 0.47 
1.077+/- 0.49 
1.153 +/- 0.47 
0.804 +/- 0.32 
0.509 +/- 0.20 
0.008 +/- 0.02 
0.004 +/- 0.01 
0.007 +/- 0.01 
0.015 +/- 0.03 
0.011+/- 0.02 
0.005 +/- 0.01 
0.007 +/- 0.02 
0.016 +/- 0.08 
0.007 +/- 0.01 
0.008 +/- 0.02 
0.444 +/- 0.58 
0.533 +/- 0.77 
0.827 +/- 1.00 
0.921 +/- 1.24 
0.867 +/- 1.15 
2.214 +/- 0.93 
3.489+/- 1.61 
3.310+/- 1.34 
3.485 +/- 1.63 
4.584 +/- 2.08 
2.282 +/- 0.93 
3.146+/- 1.11 
3.830 +/- 1.54 
4.209 +/- 1.81 
5.063 +/- 2.23 

B 
2.236+/- 1.06 
2.302 +/- 1.19 
2.648 +/- 0.95 
2.316 +/- 0.90 
1.827+/- 0.79 
0.017 +/- 0.03 
0.022 +/- 0.04 
0.030 +/- 0.05 
0.038 +/- 0.07 
0.037 +/- 0.07 
0.013 +/- 0.02 
0.024 +/- 0.05 
0.113 +/- 0.21 
0.034 +/- 0.07 
0.022 +/- 0.05 
1.481 +/- 1.60 
1.116+/- 1.73 
1.993 +/- 2.52 
4.020 +/- 4.76 
3.722 +/- 4.87 
4.790 +/- 2.64 
5.413 +/- 2.70 
6.567 +/- 3.47 
7.216 +/- 3.47 
8.013 +/- 4.41 
3.694+/- 1.43 
4.890+/- 2.11 
6.196 +/- 2.50 
5.772 +/- 2.52 
6.202 +/- 2.86 

C 
1.907 +/- 1.10 
1.982+/- 1.13 
2.287 +/- 1.13 
1.956 +/- 0.93 
1.846 +/- 0.82 
0.003 +/- 0.00 
0.003 +/- 0.01 
0.002 +/- 0.01 
0.003 +/- 0.00 
0.002 +/- 0.00 
0.002 +/- 0.01 
0.002 +/- 0.01 
0.001 +/- 0.01 
0.002 +/- 0.01 
0.003 +/- 0.01 
0.564 +/- 0.72 
0.943 +/- 1.18 
0.968 +/- 1.18 
1.221 +/- 1.66 
1.651 +/- 2.31 
2.596 +/- 1.43 
4.605 +/- 2.84 
4.495 +/- 2.84 
5.243 +/- 2.57 
5.136 +/- 2.43 
1.913 +/- 0.75 
2.745 +/- 1.06 
3.295 +/- 1.06 
3.961 +/- 1.81 
4.471 +/- 1.74 

D 
1.869+/- 0.95 
2.121 +/- 1.03 
2.275 +/- 0.87 
1.525 +/- 0.80 
1.458 +/- 0.62 
0.009 +/- 0.02 
0.021 +/- 0.03 
0.012 +/- 0.02 
0.010 +/- 0.02 
0.008 +/- 0.01 
0.008 +/- 0.02 
0.012 +/- 0.04 
0.017 +/- 0.04 
0.018 +/- 0.03 
0.013 +/- 0.02 
1.002+/- 1.18 
1.145+/- 1.58 
1.508 +/- 1.81 
3.131 +/- 3.71 
3.434 +/- 3.95 
3.518 +/- 1.76 
4.761 +/- 2.24 
5.455 +/- 2.67 
6.826 +/- 3.28 
7.544 +/- 3.92 
3.171 +/- 1.33 
4.201 +/- 1.64 
4.719 +/- 2.01 
5.331 +/- 2.30 
5.806 +/- 2.71 
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Table D-2: Dimension less particle jump length results. Rp =250 

RUN 

1 

2 

3 

4 

5 

6 

T*/T*C 

2 
2.5 
3 

3.5 
4 
2 

2.5 
3 

3.5 
4 
2 

2.5 
3 

3.5 
4 
2 

2.5 
3 

3.5 
4 
2 

2.5 
3 

3.5 
4 
2 

2.5 
3 

3.5 
4 

A 
12.037 +/- 4.70 
13.932+/- 5.51 
15.238 +/- 5.38 
10.843 +/- 3.81 
6.470 +/- 2.23 
0.338 +/- 0.51 
0.216 +/- 0.32 
0.348 +/- 0.51 
0.581 +/- 0.84 
0.472 +/- 0.65 
0.213 +/- 0.41 
0.314 +/- 0.53 
0.456 +/- 1.38 
0.321 +/- 0.49 
0.321 +/- 0.60 
5.453 +/- 6.26 
6.899 +/- 9.06 

11.011+/- 12.30 
12.907 +/- 15.83 
13.686 +/- 15.94 
17.537 +/- 6.34 
32.896 +/- 12.95 
31.848 +/- 9.50 
32.235 +/- 13.16 
48.574 +/- 17.07 
17.433 +/- 6.30 
26.218 +/- 7.90 
34.685+/- 11.74 
41.245+/- 14.11 
51.680+/- 18.42 

B 
22.779+/- 9.14 
25.614+/- 11.39 
30.501 +/- 9.32 
27.237 +/- 8.99 
21.465 +/- 8.03 
0.534 +/- 0.67 
0.702 +/- 0.95 
0.891 +/- 1.23 
1.069 +/- 1.52 
1.038 +/- 1.52 
0.451 +/- 0.58 
0.710+/- 1.08 
2.339 +/- 3.53 
0.982 +/- 1.43 
0.664 +/- 1.08 

14.217 +/- 13.68 
11.910+/- 16.74 
21.082 +/- 25.23 
39.669+/- 41.98 
39.509 +/- 45.47 
32.782 +/- 16.30 
40.696 +/- 19.29 
53.552 +/- 26.38 
62.961 +/- 27.82 
74.100 +/- 36.28 
24.847 +/- 9.14 
36.669 +/- 14.63 
50.019 +/- 18.26 
51.486 +/- 19.64 
59.305 +/- 23.48 

C 
20.015 +/- 9.40 
23.041 +/- 10.99 
27.391 +/- 10.99 
24.417 +/- 9.45 
22.445 +/- 8.09 
0.148 +/- 0.17 
0.154+/- 0.23 
0.123 +/- 0.23 
0.146 +/- 0.21 
0.109 +/- 0.16 
0.119+/- 0.20 
0.099 +/- 0.20 
0.083 +/- 0.20 
0.112+/- 0.23 
0.122 +/- 0.32 
6.899 +/- 7.72 

11.173+/- 13.03 
12.193 +/- 13.03 
16.225 +/- 20.29 
21.634 +/- 28.35 
20.696 +/- 13.41 
36.928 +/- 19.58 
41.088 +/- 19.58 
50.764 +/- 21.23 
53.432 +/- 20.91 
15.671 +/- 5.01 
24.233 +/- 7.76 
31.272 +/- 7.76 
39.754 +/- 14.73 
47.801 +/- 14.65 

D 
19.630 +/- 8.39 
24.334 +/- 10.18 
26.976 +/- 8.80 
19.468 +/- 8.68 
17.996 +/- 6.50 
0.320 +/- 0.44 
0.657 +/- 0.88 
0.415 +/- 0.65 
0.387 +/- 0.52 
0.324 +/- 0.43 
0.283 +/- 0.43 
0.364 +/- 0.84 
0.521 +/- 0.99 
0.594 +/- 0.79 
0.441 +/- 0.63 

10.462+/- 11.12 
12.589 +/- 15.94 
17.956 +/- 19.89 
34.001 +/- 35.82 
36.635 +/- 39.04 
25.560 +/- 12.53 
36.964 +/- 16.28 
43.599 +/- 20.68 
60.752 +/- 26.33 
70.968 +/- 32.77 
22.386 +/- 8.83 
32.538+/- 11.38 
40.197 +/- 14.89 
49.081 +/- 18.37 
56.672 +/- 22.33 
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Table D-3: Dimensionless mean stream-wise particle velocity results. R„ =250 

RUN 

1 

2 

3 

4 

5 

6 

T*/T*C 

2 
2.5 
3 

3.5 
4 
2 

2.5 
3 

3.5 
4 
2 

2.5 
3 

3.5 
4 
2 

2.5 
3 

3.5 
4 
2 

2.5 
3 

3.5 
4 
2 

2.5 
3 

3.5 
4 

A 
5.182+/- 1.92 
5.468 +/- 1.95 
5.413 +/- 1.95 
4.829 +/- 1.77 
3.772 +/- 1.53 
4.941 +/- 0.20 
5.065 +/- 0.22 
5.111 +/- 0.23 
5.148 +/- 0.25 
5.170 +/- 0.27 
5.286 +/- 0.43 
5.552 +/- 0.58 
5.616 +/- 0.58 
5.749 +/- 0.60 
5.615 +/- 0.57 
6.748 +/- 1.13 
7.394+/- 1.26 
7.965 +/- 1.29 
8.295 +/- 1.42 
8.530 +/- 1.40 
6.539 +/- 2.51 
7.899 +/- 2.55 
7.679 +/- 2.55 
8.390 +/- 2.53 
9.065 +/- 2.67 
6.059 +/- 2.64 
7.244 +/- 2.73 
7.915 +/- 2.86 
8.337 +/- 2.91 
9.080 +/- 2.92 

B 
7.127 +/- 2.14 
7.442 +/- 2.22 
7.660 +/- 2.16 
7.258+/- 2.11 
6.630 +/- 2.03 
4.341 +/- 0.34 
4.534 +/- 0.39 
4.680 +/- 0.44 
4.666 +/- 0.41 
4.656 +/- 0.41 
4.918 +/- 0.71 
5.205 +/- 0.78 
5.421 +/- 0.81 
5.247 +/- 0.83 
5.329 +/- 0.84 
8.510 +/- 1.70 
8.932 +/- 1.83 
9.773 +/- 1.95 

11.054+/- 2.16 
11.144+/- 2.19 
8.396 +/- 3.32 
9.014 +/- 3.34 
9.809 +/- 3.28 
9.993 +/- 3.28 

10.443 +/- 3.34 
7.013 +/- 3.15 
8.442 +/- 3.25 
9.057 +/- 3.23 
8.898 +/- 3.39 
9.208 +/- 3.38 

C 
7.134+/- 1.80 
7.322+/- 1.87 
7.786 +/- 1.87 
7.365 +/- 1.79 
7.058 +/- 1.76 
3.348 +/- 0.17 
3.349 +/- 0.19 
3.345 +/- 0.19 
3.307 +/- 0.17 
3.272 +/- 0.16 
3.699 +/- 0.47 
3.735 +/- 0.47 
3.751 +/- 0.47 
3.746 +/- 0.56 
3.634 +/- 0.46 
7.058 +/- 1.26 
8.086 +/- 1.55 
8.588 +/- 1.55 
9.007 +/- 1.70 
9.787+/- 1.82 
7.702 +/- 2.88 
8.771 +/- 3.01 
8.756 +/- 3.01 
9.338 +/- 2.80 
9.241 +/- 2.83 
6.022 +/- 2.36 
7.026 +/- 2.57 
7.026 +/- 2.57 
7.026 +/- 2.57 
8.696 +/- 2.75 

D 
6.824+/- 1.99 
7.299 +/- 2.01 
7.278 +/- 2.00 
6.606+/- 1.86 
6.283+/- 1.78 
3.777 +/- 0.30 
3.861 +/- 0.33 
3.952 +/- 0.36 
3.905 +/- 0.35 
3.823 +/- 0.36 
4.361 +/- 0.70 
4.394 +/- 0.70 
4.769 +/- 0.93 
4.442 +/- 0.71 
4.411+/- 0.71 
7.960 +/- 1.54 
8.796 +/- 1.70 
9.142+/- 1.72 

10.308 +/- 2.15 
10.803 +/- 1.98 
7.730 +/- 3.03 
8.803+/- 3.11 
9.506 +/- 3.07 
9.881 +/- 3.12 

10.267 +/- 3.24 
7.070 +/- 2.95 
7.912 +/- 3.04 
8.499 +/- 3.13 
8.933+/- 3.11 
9.214 +/- 3.22 


