
1

UNIVERSITY OF CALIFORNIA, DAVIS

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

COURSE: WATER RESOURCES SIMULATION (ECI 146)

INSTRUCTOR: Fabián A. Bombardelli

 (fabianbombardelli2@gmail.com, bmbrdll@yahoo.com, fabombardelli@ucdavis.edu)

OFFICE: 3105, Ghausi Hall (former Engineering III building)

Class: Tuesdays and Thursdays-10:30 to 11:50 PM (119 Wellman)

TEACHING ASSISTANTS AND READER: Corrin Clemons, Doug Kubota, Arturo

Palomino and Jhonatan Romero

COMPUTER PROBLEM 1: SOLUTION

Problem 1

1-1) Please define explicit and implicit algebraic equations. Please provide examples

of these types of equations from the field of water resources.

An explicit algebraic equation may be written as a function of many variables such that

one dependent variable is a function of the other set of independent variables. An

implicit algebraic equation has no separation of dependent and independent variables.

It can not be written as one variable in terms of the other variables.

Examples for explicit: Haaland equation

Examples for implicit:
1

√𝑓
= 2𝑙𝑜𝑔10 (

𝜀

3.7𝐷
+

2.51

𝑅𝑒√𝑓
)

1-2) What type of equations do you know? Please give examples of each type.

a. Algebraic equations (can be explicit or implicit)

b. Differential equations

c. Integral equations

d. Combinations of a-c

1-3) What is the physical meaning of smooth and fully-rough regimes? In which area

of the Moody chart is the Colebrook-White equation valid?

These are concepts you should recall from ECI141 or any equivalent Fluid Mechanics

course. When the regime is turbulent smooth, the viscous sub-layer is much larger than

the roughness height. Thus, the viscous sub-layer covers completely the roughness

height and beyond. In the fully-rough regime, the viscous sub-layer is much smaller

than the roughness height, i.e., the latter protrudes the viscous sub-layer. In this region,

the friction factor only depends on the relative roughness of the pipe. The Colebrook-

White equation is only valid for turbulent conditions (fully rough flow).

mailto:fabianbombardelli2@gmail.com
mailto:bmbrdll@yahoo.com
mailto:fabombardelli@ucdavis.edu

2

1-4) Please discuss the difference between the “true” and “approximate” errors in the

bisection method. Why do we use the latter if these two errors are different?

True error is the absolute value of the difference between the exact root and the guessed

root, divided by the former. Approximate error is the absolute value of difference

between the last guess and the previous one, divided by the former. Since we do not

know the exact root (because it would imply knowing it with infinite number of digits),

we do not know the true error, so we have to use the approximate error as the stopping

criterion in iterative algorithms. Since the approximate error is larger than the true error,

we are safe in using the former value of the error.

1-5) Which method is more robust? Which method is more accurate? What do we mean

by robust? What do we mean by accurate?

By the word “robust,” we refer to a method which provides a solution regardless of the

function of which we would like to find a root.

Among the three methods used in the problem below, bisection is a robust method. It

always converges to the solution regardless of how the function behaves. Obviously,

there is a price for this desirable capability: The bisection method is not as fast as

Newton-Raphson or Iteration-of-a-point (Fixed-point) methods (there are exceptions,

but roughly speaking bisection is slower than the other alternatives). The initial guess,

inherent nature of the solution, and search interval are crucial factors and may change

the situation.

The accuracy of all methods is associated with the desired error tolerance. Therefore,

if the error tolerance is set identically, all iterative algorithms will achieve the same

accuracy.

Problem 2

a) Please develop a flow chart for the bisection method used to calculate the normal

depth for a trapezoidal channel.

b) Compute the normal depth for a trapezoidal channel, using the methods of

bisection, Newton-Raphson, and fixed point, given the following information for

an asphalt channel: Q=300 ft3 /s; S=0.0015; lateral sides angle=50 degrees;

bottom width=6 ft. Please discuss suitable values of the normal depth to start the

computations, and select three values.

3

Matlab code for bisection method:

%% ECI 146 CP1 Problem 2 Solution
% Created by: Corrin Clemons
% Date: 2023-02-05

% Methods based on Handouts 8 & 9

%% Bisection Method

yl = 0.1; % guess lower bounds for channel height
yu = 9; % guess upper bounds for channel height
yr = -1; % filler variable for root (impossible solution)
tol = 1E-6; % set a tolerance for F (should be close to 0)
iter = 0; % iteration count

while (abs(F_trap(yr))>tol)

4

 iter = iter + 1;
 yr = (yl + yu)/2;

 if F_trap(yr)*F_trap(yl) < 0
 yu = yr;
 else
 yl = yr;
 end

end

fprintf('The root is %d.\n',yr)
fprintf('This algorithm took %d iterations. \n',iter)

Function for calculating f(y):

function F = F_trap(y)
 % Givens
 Q = 300; % ft3/s
 Sf = 0.0015;
 theta = 50; % deg
 b = 6; % ft
 n = 0.016;
 Kn = 1.49; % Eng units

 % Preliminary calcs
 phi = 90 - theta;
 s = y/cosd(phi); % length of side
 P = 2*s + b; % wetted perimeter (trapezoid)
 k = y*tand(phi);
 a = 2*k + b;
 Area = 0.5*(a+b)*y; % cross-sectional area (trapezoid)
 Rh = Area/P; % hydrolic radius
 F = Kn*Rh^(2/3)*Sf^(1/2)*Area/n - Q;
end

%% Simple Fixed-Point

5

tol = 1E-4; % set a tolerance for the approx error (should be close to 0)
Ea = 1; % filler variable for approx error
iter = 0; % iteration count
y1 = 4; % guess (low) for channel height

while (Ea > tol)
 y2 = F_trap_fixed(y1);
 Ea = abs((y2-y1)/y2)*100;
 iter = iter + 1;
 y1 = y2;
end

fprintf('The root is %d.\n',y2)
fprintf('This algorithm took %d iterations. \n',iter)
fprintf('The approximate error is %d. \n',iter)

Function for calculating y = g(y):

function G = F_trap_fixed(y)
 % Givens
 Q = 300; % ft3/s
 Sf = 0.0015;
 theta = 50; % deg
 b = 6; % ft
 n = 0.016;
 Kn = 1.49; % Eng units

 % Preliminary calcs
 phi = 90 - theta;
 s = y/cosd(phi); % length of side
 P = 2*s + b; % wetted perimeter (trapezoid)
 k = y*tand(phi);
 a = 2*k + b;
 Area = 0.5*(a+b)*y; % cross-sectional area (trapezoid)
 Rh = Area/P; % hydrolic radius
 G = (Q*n)/(Kn*(Rh^(2/3))*(Sf^0.5)*0.5*(a+b));
end

6

%% Newton-Raphson

tol = 1E-4; % set a tolerance for the approx error (should be close to 0)
Ea = 1; % filler variable for approx error
iter = 0; % iteration count
y1 = 4; % guess (low) for channel height

while (Ea > tol)
 y2 = y1 - F_trap(y1)/F_trap_deriv(y1);
 Ea = abs((y2-y1)/y2)*100;
 iter = iter + 1;
 y1 = y2;
end

fprintf('The root is %d.\n',y2)
fprintf('This algorithm took %d iterations. \n',iter)
fprintf('The approximate error is %d. \n',iter)

Function for calculating f’(y):

function F = F_trap_deriv(y)
 % Derivatiive obtained using Wolfram Alpha

 % Preliminary calcs
 num = 5.08403*(y^2 + 5.55411*y + 10.2705)*(y*(y*tand(40)+6))^(2/3);
 denom = (y + 2.29813)*(y*secd(40) + 3)^(2/3);

 F = num/denom;
end

7

Problem 3

 a) Sample Programs in MATLAB

%%
% University of California, Davis
% Department of Civil and Environmental Engineering
% ECI 146
% Instructor: Prof. Fabian Bombardelli
% Sample program for Newton-Raphson method
% This program finds the root of "5x^2-4=0" with Newton
% Raphson method
% Code by: Kaveh Zamani
%% initialization
clear all
% clears all the current variables from the memory
clc
% clears the command window
tolerance = input('Stopping criteria tolerance ?')
x_initial = 0.5;
x_old= x_initial;
error = 1;
% one is assigned to error to enter the below while loop
iteration_number = 0;
%% Newton-Raphson While loop
while (error > tolerance)
 f_x = 5*x_old^2 - 4;
 f_prim_x = 10*x_old;
 x_new = x_old - f_x/f_prim_x;
 error = abs((x_old - x_new)/x_new)*100;
 iteration_number = iteration_number + 1;
 % the variables/expressions without semicolon at the end are

printed on the screen
 iteration_number
 x_old = x_new
end

disp('Newton_Raphson method has converged!')
X = x_new

8

% University of California, Davis
% Department of Civil and Environmental Engineering
% ECI 146
% Instructor: Prof. Fabian Bombardelli
% by Kaveh Zamani
% This program finds the root of "x=cos(x)" between 0 and 1 by the

% method of False Position
% method is also called "Regula Falsi" method.
%% initialization
clear all
% clears all the current variables from the memory
clc
% clears the command window
tolerance = 0.000001;
max_num_iteration = 10000;
x_left_initial = 0;
x_right_initial = 1;
x_left = x_left_initial;
x_right= x_right_initial;
x_old = 2;

%% False-Position loop
for i=1:max_num_iteration;

 f_left = x_left - cos(x_left);
 f_right = x_right - cos(x_right);
 x_mid = - f_right*(x_right - x_left)/(f_right - f_left) + x_right;
 f_mid = x_mid - cos(x_mid);
 x_new = x_mid;

 error = abs((x_new-x_old)/x_old)*100;

 if(error < tolerance)
 disp('False Position method has converged!');
 X = x_mid
 break
 % break out of if condition
 elseif (f_right*f_mid > 0)
 x_right = x_mid;
 else
 x_left = x_mid;
 end
 iteration_number = iteration_number + 1;
% the variables/expressions without semicolon at the end are printed on

the screen
 x_old = x_new;

end

9

%
% University of California, Davis
% Department of Civil and Environmental Engineering
% ECI 146 Water Resource Simulation
% Instructor: Prof. Fabian Bombardelli
% Sample program for bisection method
% by Kaveh Zamani
% This program finds the root of "x^2-2x=0" between 1 and 4 by

Bisection method
%
%% initialization
clear all
% clears all the current variables from the memory
clc
% clears the command window
tolerance = 0.000001;
max_num_iteration = 10000;
x_left_initial = 1;
x_right_initial = 4;
x_left = x_left_initial;
x_right= x_right_initial;

%% Bisection loop
for i=1:max_num_iteration;
 x_mid_new = (x_left + x_right)/2;
 f_left = x_left^2 - 2*x_left;
 f_right = x_right^2 - 2*x_right;
 f_mid = x_mid_new^2 - 2*x_mid_new;

 error = abs((x_mid_new - x_mid_old)/x_mid_old)*100;

 if(error < tolerance)
 disp('Bisection method has converged!');
 X = x_mid_new
 break
 % break out of if condition
 elseif (f_right*f_mid > 0)
 x_right = x_mid_new;
 else
 x_left = x_mid_new;
 end
 iteration_number = i
 % the variables/expressions without semicolon at the end are

printed on the screen
 x_mid_old = x_mid_new;
end

10

b) Sample program written in Fortran for bisection with using the function as part of the stopping

criterion:

!Calculation of the friction factor using

!Colebrook-White’s formula

!Enter the data

 write(*,*) 'Enter roughness Ratio'

 read(*,*) ED

 write(*,*) 'Enter Reynolds number'

 read(*,*) RE

 !Interval

 write(*,*) 'Enter minimum value'

 read(*,*) FMIN

 write(*,*) 'Enter maximum value'

 read(*,*) FMAX

 !Iteration procedure

 iter=0

10 iter=iter+1

 FR=0.5*(FMIN+FMAX)

 F=1.+sqrt(FR)*0.869*log(ED/3.7+2.51/(RE*sqrt(FR)))

 if (F.gt.0.) FMIN=FR

 if(F.lt.0.) FMAX=FR

if (abs(F).gt.1.e-6) go to 10

!output: friction factor and number of iteration

 write (*,*) 'the friction factor is', FR

 write(*,*) iter

 end

The above FORTRAN code follows the flow chart of the notebook.

c) Results:

11

Bisection Method's Number of Iterations for Different Tolerances (Relative Error)

Number e/D Re F # of iterations Region

10-2 10-3 10-4

1 0.0008 3.0106 0.01872 16 19 22 Fully

rough/Transition

2 0.00005 3.0106 0.01145 17 19 23 Transition

3 0.00001 3.0107 0.00843 17 20 23 Transition

4 0.002 3.0107 0.02341 16 18 22 Fully rough

5 0.015 3.0107 0.04364 15 17 21 Fully rough

6 10-10 3.0105 0.01445 17 19 22 Smooth

7 0.002 3.0105 0.02400 16 18 21 Transition

8 0.03 3.0105 0.05722 15 17 20 Fully rough

9 0.002 3.0104 0.02807 16 18 21 Transition

10 0.01 3.0104 0.03979 15 17 21 Transition

11 10-10 3.0102 0.21333 No iteration

𝑓 =
64

𝑅𝑒

Laminar

NOTE: The number of iterations depends on initial interval and tolerance level. (Even

compiler settings may change it.)

We can see the effect of the tolerance on the number of iterations. Since the tolerance is

inversely proportional to the accuracy, when we increase the required accuracy (by

decreasing the tolerance), we increase the number of iterations too, as shown in the table

above.

Final remarks:

a) Please keep in mind that we are controlling the accuracy through the tolerance;

the issue here is how fast we obtain the solution.

b) 15 to 20 iterations are not too fast to obtain a root. (Imagine that you need to

perform this computation thousands of times.) This is why this is a “beginning

method.” The best solution is to combine this with a “refining” method.

c) How fast a method goes to the root is called “convergence,” while whether a

method is capable of providing solutions or not for any given function is called

“robustness.”

Problem 4

 Bernoulli equation:
𝑃1

𝜌𝑔
+ 𝑧1 +

𝑉1
2

2𝑔
=

𝑃2

𝜌𝑔
+ 𝑧2 +

𝑉2
2

2𝑔
+ ℎ𝑓

𝑃1 = 𝑃2 = 𝑃𝑎𝑡𝑚 and 𝑉1 = 𝑉2 = 0, so ℎ𝑓 = ∆𝑧

ℎ𝑓 = 𝑓
𝐿

𝐷

𝑉2

2𝑔
 => 8 = 𝑓

100

0.3

𝑉2

29.81
 (I) => two unknowns and one equation

12

𝑉 = (√
2𝑔𝐷ℎ𝑓

𝐿
)

1

√𝑓

 Colebrook–White equation:

1

√𝑓
= −2 log10 (

𝜀/𝐷

3.7
+

2.51

𝑅𝑒√𝑓
) = − 2 log10 (

0.0002

3.7
+

2.51
0.3 𝑉

2×10−5 √𝑓
) (II) => two unknowns and two

equations

=> (I) and (II) system of equations for V and f

Starting with f=0.002 and V = 5 m/s we have:

f= 0.0201 and V=4.841 m/s

The same result can be obtained by directly replacing (I) in (II).

Note
If you want to check your calculations online, you can insert your equation in

http://www.wolframalpha.com/ It is a solver by Wolfram Mathematica.

Or you can use MATLAB for numerical solution of implicit equations, just type:

x=solve ('x^2-x*sin(x)-3=0') and hit Enter key

x = -2.1873720723545800214091973612386

