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The three-reservoir
problem can be
quite complex.
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Dy
B FIGURE 8.36 Multiple pipe loop system.

and

hL = hL = hL:,

1 2

Again, the method of solution of these equations depends on what information is given and
what is to be calculated.

Another type of multiple pipe system called a loop is shown in Fig. 8.36. In this case
the flowrate through pipe (1) equals the sum of the flowrates through pipes (2) and (3), or
0, = O, + Q5. As can be seen by writing the energy equation between the surfaces of each
reservoir, the head loss for pipe (2) must equal that for pipe (3), even though the pipe sizes
and flowrates may be different for each. That is,

pa Vi, s Vi

B
+ 2= Lt n +h
¥ 2 A y 2¢ B L, L,
for a fluid particle traveling through pipes (1) and (2), while
V2 V2
Pay Zay =P B by by
Y 2 Y 2 '

for fluid that travels through pipes (1) and (3). These can be combined to give #;, = h; . This
is a statement of the fact that fluid particles that travel through pipe (2) and particles that
travel through pipe (3) all originate from common conditions at the junction (or node, N) of
the pipes and all end up at the same final conditions.

The flow in a relatively simple looking multiple pipe sysiem may be more com-
plex than it appears initially. The branching system termed the three-reservoir problem
shown in Fig. 8.37 is such a system. Three reservoirs at known elevations are connected
together with three pipes of known properties (lengths, diameters, and roughnesses). The
problem is to determine the flowrates into or out of the reservoirs. If valve (1) were
closed, the fluid would flow from reservoir B to C, and the flowrate could be easily

BEFIGURE 8.37
A thrge-reservoir system.
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calculated. Similar calculations could be carried out if valves (2) or (3) were closed with

the others open.

With all valves open, however, it is not necessarily obvious which direction the fluid
flows. For the conditions indicated in Fig. 8.37, it is clear that fluid flows from TeServoir

For some pipe sys-
tems, the direction
of flow is not
known a priori.

Example 8.14.

Three reservoirs are connected by three pipes as are shown in
Fig. E8.14. For simplicity we assume that the diameter of each
pipe is 1 ft, the friction factor for each is 0.02, and because of
the large length-to-diameter ratio, minor losses are negligible.
Determine the flowrate into or out of each reservoir.

®

(EXAMPLE 8.14 B Multiple Pipe System

Sorution

It is not obvious which direction the fluid flows in pipe (2).
However, we assume that it flows out of reservoir B, write
the governing equations for this case, and check our assump-
tion. The continuity equation requires that 0, + Q, = Q,,
which, since the diameters are the same for each pipe,
becomes simply

Vit V=V, 1)

The energy equation for the fluid that flows from A to C in
pipes (1) and (3) can be written as

P, Vi

Y 2

c
+ oz, ==+
Y

By using the fact that p, = Pc =V, = V= z, = 0, this be-
comes

For the given conditions of this problem we obtain

0.02 1 o 2
2(32.2 fi/s?) (1 fr) [(1000 ft)V + (floo fi)V2]

100 ft =

or
322 = Vi + 0.4V? 2)

where V; and V; are in ft/s. Similarly the energy equation for
fluid flowing from B and C is
6V 6V

Ve
+t—t et f——
2g

V2
Pg, Vs + /i
D,2g D, 2g

Y 2

Pe

g =

A because the other two reservoir levels are lower. Whether the fluid flows into or out of
reservoir B depends on the elevation of reservoirs B and C and the properties (length, di-
ameter, roughness) of the three pipes. In general, the flow direction is not obvious, and the
solution process must include the determination of this direction. This is illustrated in

Elevation =
] 201t
Elevation =
0 ft
BFIGURE E8.14
or
£, Vi & V2
p=ho ot
D, 2¢g D; 2¢g
For the given conditions this can be written as
64.4 = 0.5V + 04V2 3)

Equations 1, 2, and 3 (in terms of the three unknowns Vi, V,, and
V;) are the goveming equations for this flow, provided the fluid
flows from reservoir B, It tams out, however, that there is no sol-
tion for these equations with positive, real values of the velocities.
Although these equations do not appear to be complicated, there is
no simple way to solve them directly. Thus, a trial-and-error
solution is suggested. This can be accomplished as follows.
Assume a value of V; > 0, calculate V3 from Eq. 2, and then V,
from Eq. 3. It is found that the resulting V,, V,, V; trio does not sat-
1sfy Eq. 1 for any value of V, assumed. There is no solution to Eqgs.
1,2, and 3 with real, positive values of V,, V,, and V3. Thus, our
original assumption of flow out of reservoir B must be incorrect.

To obtain the solution, assume the fluid flows into reser-
voirs B and C and out of A. For this case the continuity equa-
tion becomes

O =0+ 0

or

Applic:
A and (

and

which,
and

Equ

tracting

Thus, I

or




ration =
20 it

ion =
ft

which, with the given data, become
258 = Vi + 0.5V}
and

322 = VI + 04V}

tracting Eq. 5 from 6 we obtain
Vs = V160 + 125V}
Thus, Eq. 5 can be written as

258 = (V, + V3)* + 0.5V2

=(V, + V160 + 1.25V3)? + 0.5V3
or
2V, V160 + 1.25V% = 98 — 2.75V3
\_

G

or
Vi=V,+ Vs
Application of the energy equation between points A and B and
A and C gives
y ¢, Vi np 6 V3
=z L1 2272
24 B 1 D, 2g 2 D, 2g
and
LviLL 6V
=zt +fh——
w2 TP o

&)

(6)

Equations 4, 5, and 6 can be solved as follows. By sub-

(7)
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which, upon squaring both sides, can be written as
VA 460 V2 + 3748 = 0

By .using the quadratic formula we can solve for V? to obtain
either V% =452 or V% = 8.30. Thus, either V, = 21.3 ft/s or
V, = 2.88 ft/s. The value V, = 21.3 ft/s is not a root of the
original equations. It is an extra root introduced by squaring
Eq. 7, which with V, = 21.3 becomes “1140 = —1140.” Thus,
V, = 2.88 fi/s and from Eq. 5, V, = 15.9 ft/s. The corre-
sponding flowrates are

0, =AYV, = %va, - %(1 )2 (15.9 ft/s)

= 12.5 f’/s from A (Ans)

0, =AY, = %D%Vz = %(1 ft)2 (2.88 ft/s) (Ans)
= 2.26 ft*/s into B

and

0,= 0, — 0, = (12.5 — 2.26) f’/s
=10.2 ﬁ3/s into C (Ans)

Note the slight differences in the governing equations depend-
ing on the direction of the flow in pipe (2)—compare Egs. 1, 2,
and 3 with Egs. 4, 5, and 6.

If the friction factors were not given, a trial-and-error pro-
cedure similar to that needed for Type II problems (see Section
8.5.1) would be required.

The ultimate in multiple pipe systems is a network of pipes such as that shown in
Fig. 8.38. Networks like these often occur in city water distribution systems and other sys-
tems that may have multiple “inlets” and “outlets.” The direction of flow in the various pipes
is by no means obvious—in fact, it may vary in time, depending on how the system is used

from time to time.

The solution for pipe network problems is often carried out by use of node and loop
equations similar in many ways to that done in electrical circuits. For example, the continuity
equation requires that for each node (the junction of two or more pipes) the net flowrate is zero.

|

I/

B FIGURE 8.38 A general
pipe network.




