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Scaling and Similarity in Rough Channel Flows
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We show that Manning’s empirical formula for the mean velocity of turbulent flows in channels rep-
resents the power-law asymptotic behavior of a flow of incomplete similarity in the relative roughness.
We then derive the formula based on the phenomenological theory of turbulence. Our derivation yields
the correct similarity exponent; it justifies Manning’s use of a single parameter, the hydraulic radius, to
characterize the geometry of the cross section; and it affords insight into the mechanism of momentum
transfer.
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Manning’s empirical formula for the mean velocity
of gravity-driven, uniform, fully developed turbulent
flows in rough open channels is among the better known
expressions used by hydrologists, geomorphologists, and
hydraulic engineers. The formula is customarily used
to determine the capacity of natural streams and flood
plains, and to design artificial channels [1,2]. It has also
been used to quantify the vast flows which appear to have
occurred on Mars in pre-Amazonian times [3]. Because
it embodies a large corpus of experimental results [1],
and it is known to work very well, Manning’s formula
affords a singular opportunity for gaining insight into a
problem of considerable theoretical interest and numerous
applications. Yet, there exists no theory of Manning’s for-
mula, and the following assertion, made in a classical text
on geomorphology [4], remains valid after thirty-seven
years: “It is truly surprising that engineering practice has
depended to such an extent on a formula as empirical as
this one, derived nearly a century ago.”

Manning’s formula is usually written in the dimension-
ally inconsistent form

V �
1
n

s1�2R2�3, (1)

where V is the mean velocity of the flow, s is the slope of
the channel, R is the hydraulic radius of the cross section
of the channel, and n is the roughness coefficient. The
hydraulic radius is defined as the area of the cross section
of the channel divided by the length of the wetted perime-
ter; for example, for a rectangular channel of width b and
depth h, R � bh��b 1 2h�, and limb!` R � h. (The use
of the single parameter R to characterize the geometry of
the cross section has been amply verified experimentally,
at least for the case of rectangular channels.) Appropri-
ate values of n have been measured for different types of
channel walls, and tabulated [2,5].

Before deriving Manning’s formula, Eq. (1), we ascer-
tain to what extent it can be predicated on dimensional
analysis and suitable assumptions of similarity. Based on
(1), we start by including V , R, and gs in our set of vari-
ables, where gs is the active component of the gravitational
0031-9007�02�88(1)�014501(4)$15.00
acceleration. To characterize the roughness of the channel
walls we follow several authors (e.g., [2]) in using a vari-
able r, the absolute roughness, which has units of length.
The dimensional equations �gs� � �V 2�R� and �r� � �R�
show that the dimensions of two of the variables (gs and
r) can be expressed as products of powers of the dimen-
sions of the other variables; it follows from Buckingham’s
P theorem [6] that we can reduce the functional relation-
ship among V , R, gs, and r to an equivalent functional
relationship between two dimensionless variables. A sen-
sible choice of dimensionless variables is F � V�

p
gR

(the Froude number) and r�R (the relative roughness). We
express the functional relationship between F and the rela-
tive roughness in the form F � F �r�R�, or, equivalently,

V � F

∑
r
R

∏ p
Rgs , (2)

where F is a dimensionless function of r�R. To make fur-
ther progress, we note that in rivers and artificial channels
r�R ø 1, and seek to formulate an asymptotic similar-
ity law for r�R ! 0. There are two possible similarities:
complete and incomplete [6]. In the case of complete sim-
ilarity in r�R, F �r�R� tends to a constant as r�R ! 0.
This would make V independent of the roughness in rivers
and artificial channels (where r�R ø 1), which is con-
trary to experimental observation. In the case of incom-
plete similarity in r�R, (2) admits the following power-law
asymptotics [6],

V � K

µ
r

R

∂ap
Rgs 1 o

∑µ
r

R

∂a∏
, (3)

where K is a dimensionless constant, and a is a similar-
ity exponent, which cannot be determined by dimensional
analysis. A comparison of (3) with (1) shows that the lead-
ing term of (3) is compatible with Manning’s formula, and
that a � 21�6. The value of a is the most important em-
pirical result implicit in Manning’s formula. A comparison
of (3) with (1) also shows that n � K21r1�6g21�2. Two
pieces of this expression for n have been proposed pre-
viously. The scaling n � g21�2 was suggested by Chow
[2], and later justified dimensionally by Yen [7]; it was first
© 2001 The American Physical Society 014501-1



VOLUME 88, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 7 JANUARY 2002
used by Carr [3] to adapt the tabulated values of n to the
gravitational field of Mars. The scaling n � r1�6 was pro-
posed by Strickler [2] based on the analysis of extensive
experimental data.

In deriving Manning’s formula we expect to verify
(i) that an incomplete similarity in r�R prevails for
r�R ø 1; (ii) that the similarity exponent is a � 21�6;
and (iii) that for rectangular channels the hydraulic radius
suffices to characterize the geometry of the cross section.

We start by considering a rectangular channel of slope s.
Then, the streamwise component of the gravitational force
per unit length of channel is Fg � rbhgs, where r is the
density of the fluid. Let us call S a wetted surface tangent
to the peaks of the roughness elements, Fig. 1. (For the
time being, we need only consider roughness elements of
uniform size r.) Under conditions of fully developed tur-
bulence, the streamwise component of the force on S per
unit length of channel is Ft � �b 1 2h�t. In this expres-
sion, b 1 2h is the wetted perimeter and t � rjynyt j
is a Reynolds shear stress, where yn and yt are the fluctu-
ating velocities normal and tangent to S , respectively, and
an overbar denotes time average. We study yn first, and
start by making a crucial observation: when the relative
roughness is small �r�R ø 1�, turbulent eddies of sizes
larger than, say, 2r, can provide only a negligible velocity
normal to S , Fig. 1. On the other hand, turbulent eddies
smaller than r fit in the space between successive rough-
ness elements, and they can provide a velocity normal to
S . However, when these eddies are smaller than, say, r�2,
their characteristic velocities are negligible compared with
the characteristic velocity of the eddies of size r. Thus,
yn is dominated by ur , which is the characteristic velocity
associated with the eddies of size r (a suitable mathemati-
cal expression for ur is given in [8]). In other words,
yn � ur , where the symbol “�” means “scales with.” We
now turn to yt . Eddies of all sizes can provide a velocity
tangent to S . It follows that yt is dominated by V , which
is the characteristic velocity associated with the largest
eddies, and yt � V . We surmise that jynyt j � urV ,
which together with the equation of balance of momentum
transfer, Fg � Ft, leads to

ur V �
µ

bh
b 1 2h

∂
gs � Rgs . (4)

We now seek to relate ur and V . To that end we use
Kolmogórov’s scaling. This scaling can be easily derived

FIG. 1. Immediate vicinity of a channel wall with roughness
elements of characteristic size r . The dashed line is the trace of a
wetted surface S tangent to the peaks of the roughness elements.
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for isotropic turbulence. It has been proved, however, that
the scaling applies as well to turbulence which is not only
anisotropic, but also inhomogeneous [9] (the turbulence is
inhomogeneous in the vicinity of the wall). If the eddies of
size r are within the inertial range (i.e., if r ¿ h, where
h is the Kolmogórov length), then u3

r �r � ´, where ´

is the rate of dissipation of turbulent energy per unit mass.
According to Kolmogórov’s theory of turbulence, ´ equals
the rate of production of turbulent energy per unit mass,
and is independent of the viscosity [8,10]. It follows that a
scaling expression for ´ can be obtained in terms of V , b,
and h. The largest eddies possess an energy per unit mass
�V 2; of these, the ones with horizontal vorticity vector
are characterized by a turnover time h�V , whereas the
ones with vertical vorticity vector are characterized by a
turnover time �b�2��V , Fig. 2. We conclude that

u3
r

r
� ´ �

V 2

h�V
1

V2

b�2V
�

µ
b 1 2h

bh

∂
V3 �

V 3

R
,

(5)

whereupon

ur �
µ

r
R

∂1�3

V . (6)

This equation indicates that ur is self-similar in r with ex-
ponent 1�3, a well-known result of Kolmogórov’s theory
[8]. More surprisingly, r appears normalized by the hy-
draulic radius R. Substituting (6) into (4) yields

V �
µ

r
R

∂21�6p
Rgs , (7)

which is the leading term of (3) with a � 21�6, as
expected. This concludes our derivation.

We have derived Manning’s formula for the case of chan-
nel walls with roughness elements of uniform size r. We
now generalize our derivation to the case of channel walls
with roughness elements in a range of sizes. Consider

FIG. 2. Largest-length-scale eddies in a rectangular channel of
width b and depth h. The velocity of these eddies scales with
the mean velocity of the flow V .
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a channel wall W1 characterized by a probability distri-
bution p�s�,

R`
0 p�s� ds � 1, where p�s� ds measures

the probability of finding a roughness element of a size
between s and s 1 ds. Assume that for the channel wall
W1 the average roughness element is of size 1, i.e., thatR`

0 sp�s� ds � 1. Then, we can use W1 to generate a
family of geometrically similar channel-wall surfaces
�Wr	. For a generic member Wr of this family of
channel-wall surfaces the average roughness element is
of size r, i.e.,

R`
0 sp�s�r� d�s�r� � r. (The concept of

geometrically similar channel-wall surfaces dates back to
the early Twentieth Century; see, e.g., [11]). We now
rederive Manning’s formula for a generic member Wr of
the family of geometrically similar channel-wall surfaces
�Wr 	. The average Reynolds stress on the wetted surface
S of Fig. 1 is t � rV

R`
0 usp�s�r� d�s�r�, and

we can rewrite (4) in the form

V
Z `

0
usp�s�r� d�s�r � � Rgs . (8)

On the other hand,

us �
µ

s

R

∂1�3

V �

µ
s

r

∂1�3µ
r

R

∂1�3

V . (9)

Substituting (9) into (8) leads to the leading term of (3)
with

K � K0

µ Z `

0
j1�3p�j� dj

∂21�2

, (10)

where K0 is a constant.
We obtained (7) based on three assumptions. The first

one is that r�R ø 1. In keeping with this assumption, (7)
corresponds to the leading term in the power-law asymp-
totics of Eq. (3). The second assumption is that the tur-
bulent eddies in the vicinity of the walls are governed by
Kolmogórov’s scaling (6). This is justified because Kol-
mogórov’s scaling has been shown to apply to inhomoge-
neous turbulence. The third assumption is that the spaces
between roughness elements are occupied by eddies of size
r, in the form shown in Fig. 1. We now discuss this third
assumption.

It is apparent that an eddy of size r could be found be-
tween any two successive roughness elements. In deriving
(7) we have assumed, however, that one such eddy does oc-
cupy the space between each pair of consecutive roughness
elements. Our assumption could be justified by recalling
that in Kolmogórov’s theory eddies of any given size within
the inertial range are space filling (this is required for ´ to
be scale invariant within the inertial range [8]). It is perhaps
more illuminating to think of the assumed set of eddies of
size r as akin to the arrays of parallel vortices that have
long been documented in the vicinity of smooth channel
walls, and which constitute the most common form of
coherent structures. (Note, however, that the eddy of size r
in Fig. 1 need not have a vorticity vector oriented stream-
wise.) We know from theoretical work on the etiology
of coherent structures that numerous instabilities are pos-
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sible leading to arrays of vortices of specific wavelengths
[12,13]. Interestingly, it has been conjectured that the
presence of periodic forms of wall roughness (such as, for
instance, riblets) may excite instabilities of similar
wavelength [12]. This conjecture affords a compelling
explanation for the incomplete similarity in the relative
roughness, r�R, displayed by Eq. (3). In fact, this
similarity is quite puzzling: given that turbulence involves
a wide spectrum of wavelengths, spanning many orders of
magnitude, why would r, which is just one wavelength
somewhere within that spectrum, appear so conspicuously
in (3)? The puzzle is explained if the wall roughness
induces arrays of eddies of size r in the immediate vicinity
of the wall and if, as suggested by our derivation, these
eddies effect most of the momentum transfer. Thus, if r
diminishes, the capacity for momentum transfer also
diminishes; as a result, the fluid friction diminishes, and the
mean velocity increases, as indicated by Eq. (7). Given
that the size of the eddies is bounded below by the
Kolmogórov length h, it is interesting to investigate
what happens when r approaches h. To that end, we
start by recalling that h � n3�4´21�4, where n is the
kinematic viscosity. From (5) we have ´ � V3�R,
and therefore h�R � �n�VR�3�4 � Re23�4, where
Re � VR�n is the Reynolds number. Therefore, as the
roughness approaches the Kolmogórov length (i.e., as
the channel walls become hydraulically smooth), we
expect (7) to become

V � Re1�8
p

Rgs . (11)

The appearance of the Reynolds number in (11) indicates
that in the limit r ! h the momentum transfer is viscous.
It is convenient to write (11) in terms of the resistance
coefficient, f � Rgs�V2; the result is f � Re21�4, which
we recognize as Blasius’s classical empirical scaling
for hydraulically smooth channels [2]. This result un-
veils the existence of a relationship among the three well
known, and apparently unrelated, scalings due to Blassius,
f � Re21�4, Kolmogórov, h � n3�4´21�4, and Manning,
V � r21�6.

We have provided a derivation of Manning’s empirical
formula. Besides the final result, we have reached a num-
ber of interesting conclusions. For example, in rectangular
channels the Reynolds stress in the immediate vicinity of
the walls depends on (i) the mean velocity of the flow,
(ii) the local wall roughness, and (iii) the depth and width
of the cross section through the hydraulic radius only. This
conclusion suggests ways of formulating generalized Man-
ning formulas for channels in which different portions of
the channel walls are characterized by different families
of geometrically similar channel-wall surfaces, of con-
siderable interest in applications. It also has momentous
geomorphological implications, since it allows for the de-
termination of absolutely stable aspect ratios, b�h, in natu-
ral channels. We shall study these and other related issues
in a separate paper.
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